Progress in Plant Protection

Biological activity of Trichoderma spp. in greenhouse and in vitro studies
Biologiczna aktywność Trichoderma spp. w badaniach szklarniowych oraz in vitro

Аltynai Mambaeva, e-mail: altyn71-71@mail.ru

Kazachski Państwowy Uniwersytet Rolniczy, Aleja Abaya 8, 050010 Ałmaty, Kazachstan

Ilona Świerczyńska, e-mail: i.swierczynska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Katarzyna Pieczul, e-mail: k.pieczul@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Kenzhali Khidirov, e-mail: kenzhali0569@mail.ru

Kazachski Państwowy Uniwersytet Rolniczy, Aleja Abaya 8, 050010 Ałmaty, Kazachstan

Amankeldy Sadanov, e-mail: a.sadanov@inbox.ru

Instytut Mikrobiologii i Wirusologii, Bogenbaja Batyra 103, 050010 Ałmaty, Kazachstan

Olga Shemshura, e-mail: olgashemshura@mail.ru

Instytut Mikrobiologii i Wirusologii, Bogenbaja Batyra 103, 050010 Ałmaty, Kazachstan

Bożena Łozowicka, e-mail: b.lozowicka@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska
Streszczenie

Study of the biological activity of Trichoderma included 4 isolates of T. asperelleum, T. harzianum, T. atroviride and plant pathogens: Fusarium avenaceum, F. culmorum, F. graminearum, F. poae, Oculimacula yallundae and Rhizoctonia cerealis. The cultures were grown as dual culture (pathogen/antagonist) under the laboratory conditions and the linear growth of the fungi was compared in the following days. In the greenhouse experiment, the influence of Trichoderma fungi on the mass of aboveground parts of maize, winter wheat and rapeseed was evaluated. Trichoderma isolates showed significant antagonistic activity to the pathogens tested in in vitro experiment. In both greenhouse tests, the beneficial effect of Trichoderma spp. was found on the mass of aboveground parts of plants in combination with wheat and oilseed rape. The results obtained in combination with maize showed no significant differences.

 

W badaniach biologicznej aktywności grzybów rodzaju Trichoderma wykorzystano 4 izolaty T. asperellum, T. harzianum, T. atroviride oraz patogeny roślinne: Fusarium avenaceum, F. culmorum, F. graminearum, F. poae, Oculimacula yallundae i Rhizoctonia cerealis. W doświadczeniu laboratoryjnym prowadzono hodowlę bikultur (patogen/antagonista), porównując w kolejnych dniach wzrost liniowy grzybów. W części szklarniowej doświadczenia oceniano wpływ grzybów z rodzaju Trichoderma na masę części nadziemnej kukurydzy, pszenicy ozimej oraz rzepaku. W doświadczeniu in vitro izolaty Trichoderma wykazały istotne działanie antagonistyczne w stosunku do badanych patogenów. W obu wariantach testu szklarniowego stwierdzono korzystny wpływ Trichoderma spp. na masę części nadziemnej roślin w kombinacji z pszenicą i rzepakiem. Wyniki uzyskane w kombinacji z kukurydzą nie wykazały istotnych różnic.

Słowa kluczowe
Trichoderma spp.; biological activity; pathogens; antagonist; biologiczna aktywność; patogen; antagonista
Referencje

Abd El-Hamed K.E., Elwan M.W.M., Shaban W.I. 2011. Enhanced sweet corn propagation: studies on transplanting feasibility and seed priming. Vegetable Crops Research Bulletin 75 (1): 31–50. DOI: 10.2478/v10032-011-0016-4.

 

Akladious S.A., Abbas S.M. 2012. Application of Trichoderma harziunum T22 as a biofertilizer supporting maize growth. African Journal of Biotechnology 11 (35): 8672–8683. DOI: 10.5897/AJB11.4323.

 

Altomare C., Norvell W.A., Björkman T., Harman G.E. 1999. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Applied and Environmental Microbiology 65 (7): 2926–2933.

 

Benítez T., Rincón A.M., Limón M.C., Codón A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7 (4): 249–260.

 

Błaszczyk L., Siwulski M., Sobieralski K., Lisiecka J., Jędryczka M. 2014. Trichoderma spp. – application and prospects for use in organic farming and industry. Journal of Plant Protection Research 54 (4): 309–317. DOI: 10.2478/jppr-2014-0047.

 

Bogumił A., Paszt L.S., Lisek A., Trzciński P., Harbuzov A. 2013. Identification of new Trichoderma strains with antagonistic activity against Botrytis cinerea. [Identyfikacja nowych szczepów Trichoderma o aktywności antagonistycznej przeciwko Botrytis cinerea]. Folia Horticulturae 25 (2): 123–132. DOI: 10.2478/fhort-2013-0014.

 

De Meyer G., Bigirimana J., Elad Y., Höfte M. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology 104 (3): 279–286. DOI: 10.1023/A:1008628806616.

 

Donoso E.P., Bustamante R.O., Carú M., Niemeyer H.M. 2008. Water deficit as a driver of the mutualistic relationship between the fungus Trichoderma harzianum and two wheat genotypes. Applied and Environmental Microbiology 74 (5): 1412–1417. DOI: 10.1128/AEM.02013-07.

 

Dubey S.C., Suresh M., Singh B. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control 40 (1): 118–127. DOI: 10.1016/j.biocontrol.2006.06.006.

 

El-Komy M.H., Saleh A.A., Eranthodi A., Molan Y.Y. 2015. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathology Journal 31 (1): 50–60. DOI: 10.5423/PPJ.OA.09.2014.0087.

 

Gaikwad S.N., Salve S.N., Rajurkar S.K. 2018. In vitro antagonistic activity of Trichoderma harzianum against soilborne fungal pathogens. International Journal of Biology Research 3 (2): 87–89.

 

Hermosa R., Viterbo A., Chet I., Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158 (1): 17–25. DOI: 10.1099/mic.0.052274-0.

 

Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87 (1): 4–10. DOI: 10.1094/PDIS.2003.87.1.4.

 

Kumar G., Maharshi A., Patel J., Mukherjee A., Singh H.B., Sarma B.K. 2017. Trichoderma: a potential fungal antagonist to control plant diseases. Annual Technical Issue 21: 206–218.

 

Maag D., Kandula D.R.W., Müller C., Mendoza-Mendoza A., Wratten S.D., Stewart A., Rostás M. 2014. Trichoderma atroviride LU132 promotes plant growth but not induced systemic resistance to Plutella xylostella in oilseed rape. BioControl 59 (2): 241–252. DOI: 10.1007/s10526-013-9554-7.

 

Maček J., Celar F. 1990. Physiological properties of the fungus Trichoderma longibrachiatum Rifai and its pathogenicity for maize seedlings and young maize plants. Journal of Phytopathology 130 (3): 241–248. DOI: 10.1111/j.1439-0434.1990.tb01173.x.

 

Mambaeva А., Sadanov A., Shemshura O., Ibishev U., Alimzhanova M., Lozovicka B. 2018. Prospects of using fungi of genus Trichoderma as agents of biocontrol for fungal diseases of potatoes and cucumbers in Kazakhstan. Journal of Pharmaceutical Sciences and Research 10 (11): 2855–2857.

 

Mao W., Lewis J.A., Hebbar P.K., Lumsden R.D. 1997. Seed treatment with a fungal or a bacterial antagonist for reducing corn dampingoff caused by species of Pythium and Fusarium. Plant Disease 81 (5): 450–454. DOI: 10.1094/PDIS.1997.81.5.450.

 

Monte E. 2001. Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology 4: 1–4. DOI: 10.1007/s101230100001.

 

Nosir W.S. 2016. Trichoderma harzianum as a growth promoter and bio-control agent against Fusarium oxysporum f. sp. tuberosi. Advances in Crop Science and Technology 4 (2): 217. DOI: 10.4172/2329-8863.1000217.

 

Ommati F., Zaker M. 2012. In vitro and greenhouse evaluations of Trichoderma isolates for biological control of potato wilt disease (Fusarium solani). Archives of Phytopathology and Plant Protection 45 (14): 1715–1723. DOI: 10.1080/03235408.2012.702467.

 

Piegza M., Stolaś J., Kancelista A., Witkowska D. 2009. Wpływ grzybów rodzaju Trichoderma na wzrost patogennych grzybów strzępkowych w testach biotycznych na nietypowych źródłach węgla. [Influence of Trichoderma strains on the growth of pathogenic moulds in biotic test on untypical carbon sources]. Acta Scientiarum Polonorum, Biotechnologia 8 (1): 3–14.

 

Popiel D., Kwaśna H., Chełkowski J., Stępień Ł., Laskowska M. 2008. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens. [Antagonistyczne oddziaływanie wybranych grzybów na toksynotwórcze gatunki Fusarium patogeniczne dla zbóż]. Acta Mycologica 43 (1): 29–40.

 

Rajeswari P., Kannabiran B. 2011. In vitro effects of antagonistic microorganisms on Fusarium oxysporum [Schlecht. Emend. Synd & Hans] infecting Arachis hypogaea L. Journal of Phytology 3 (3): 83–85.

 

Rawat L., Singh Y., Shukla N., Kumar J. 2011. Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil 347: 387–400. DOI: 10.1007/s11104-011-0858-z.

 

Sankar P., Sharma R.C. 2001. Management of charcoal rot of maize with Trichoderma viride. Indian Phytopathology 54 (3): 390–391.

 

Shivanna M.B., Meera M.S., Kageyama K., Hyakumachi M. 1996. Growth promotion ability of zoysiagrass rhizosphere fungi in consecutive plantings of wheat and soybean. Mycoscience 37 (2): 163–168. DOI: 10.1007/BF02461341.

 

Shoresh M., Harman G.E. 2008. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiology 147 (4): 2147–2163. DOI: 10.1104/pp.108.123810.

 

Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Barbetti M.J., Li H., Woo S.L., Lorito M. 2008a. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology 72 (1–3): 80–86. DOI: 10.1016/j.pmpp.2008.05.005.

 

Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. 2008b. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry 40 (1): 1–10. DOI: 10.1016/j.soilbio.2007.07.002.

 

White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. s. 315–322. W: PCR Protocols: A Guide to Methods and Applications (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, red.). Academic Press, New York. DOI: 10.1016/B978-0-12-372180-8.50042-1.

 

Wojtkowiak-Gębarowska E. 2006. Mechanizmy zwalczania fitopatogenów glebowych przez grzyby z rodzaju Trichoderma. Postępy Mikrobiologii 45 (4): 261–273.

 

Zafari D., Koushki M.M., Bazgir E. 2008. Biocontrol evaluation of wheat take-all disease by Trichoderma screened isolates. African Journal of Biotechnology 7 (20): 3653–3659.

 

Zhang S., Gan Y., Xu B. 2016. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science 7: 1405. DOI: 10.3389/fpls.2016.01405.

 

Zhang F., Yuan J., Yang X., Cui Y., Chen L., Ran W., Shen Q. 2013. Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil 368 (1–2): 433–444. DOI: 10.1007/s11104-012-1519-6.

Progress in Plant Protection (2019) 59: 93-98
Data pierwszej publikacji on-line: 2019-05-10 15:05:43
http://dx.doi.org/10.14199/ppp-2019-013
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy