Progress in Plant Protection

Ability of selected microorganisms to limit Phytophthora infestans (Mont.) de Bary growth on potato in correlation to temperature
Zdolność wybranych mikroorganizmów pożytecznych do ograniczania wzrostu Phytophthora infestans (Mont.) de Bary na ziemniaku w zależności od temperatury

Joanna Krzymińska, e-mail: j.krzyminska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Jolanta Kowalska, e-mail: j.kowalska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Magdalena Jakubowska, e-mail: m.jakubowska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

The aim of the study was to determine whether selected microorganisms such as Pythium oligandrum Drechsler, Bacillus subtilis (Ehrenberg) Cohn and Cryptococcus albidosimilis Vishniac & Kurtzman are able to reduce the development of Phytophthora infestans (Mont.) de Bary on a model plant at various temperatures and to establish their survival abilities. The experiments were conducted undergreenhouse and laboratory conditions on potato plants (Lord variety), which were artificially inoculated with P. infestans and treated with water solutions of examined microorganisms. It was demonstrated that the selected microorganisms varied in the survival and antagonistic abilities against P. infestans below 10°C and the yeast C. albidosimilis species exhibited the best abilities under low temperatures. All microorganisms were able to survive for one week under greenhouse conditions, however the survival rate for 10 days was low.

 

Badania prowadzono w warunkach laboratoryjnych i szklarniowych, gdzie założono doświadczenie na ziemniaku odmiany Lord, który inokulowano mikroorganizmem Phytophthora infestans (Mont.) de Bary oraz traktowano wodnymi zawiesinami czynników biologicznych: Pythium oligandrum Drechsler, Bacillus subtilis (Ehrenberg) Cohn oraz Cryptococcus albidosimilis Vishniac & Kurtzman. Celem badań było określenie czy wybrane mikroorganizmy ograniczają rozwój patogena na roślinie modelowej oraz ustalenie czasu ich przeżywalności w różnych temperaturach. Wykazano, że wybrane mikroorganizmy charakteryzują się zróżnicowaną przeżywalnością i zdolnościami antagonistycznymi wobec P. infestans, preferując temperatury do 10°C. W warunkach szklarniowych wszystkie mikroorganizmy przeżywały do 7 dni, natomiast ich przeżywalność powyżej 10 dni była niewielka. Wysoką aktywnością biologiczną w temperaturze 4°C wykazał się C. albidosimilis, podczas gdy P. oligandrum i B. subtilis hamowały wzrost i rozwój.

Key words
biocontrol; beneficial microorganisms; potato blight; ochrona biologiczna; mikroorganizmy pożyteczne; zaraza ziemniaka
References

Benhamou N., le Floch G., Vallance J., Gerbore J., Grizard D., Rey P. 2012. Pythium oligandrum: an example of opportunistic success. Microbiology 158 (11): 2679–2694. DOI: 10.1099/mic.0.061457-0.

 

Butinar L., Spencer-Martins I., Gunde-Cimerman N. 2007. Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. Antonie Van Leeuwenhoek 91 (3): 277–289. DOI: 10.1007/s10482-006-9117-3.

 

Chowdappa P., Mohan Kumar S.P., Jyothi Lakshmi M., Upreti K.K. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65 (1): 109–117. DOI: 10.1016/j.biocontrol.2012.11.009.

 

Cwalina-Ambroziak B., Damszel M.M., Głosek-Sobieraj M. 2015. The effect of biological and chemical control agents on the health status of the very early potato cultivar Rosara. Journal of Plant Protection Research 55 (4): 389–395. DOI: 10.1515/jppr-2015-0052.

 

Devi A.R., Kotoky R., Pandey P., Sharma G.D. 2017. Application of Bacillus spp. for sustainable cultivation of potato (Solanum tuberosum L.) and the benefits. p. 185–212. In: “Bacilli and Agrobiotechnology” (M.T. Islam, M.M. Rahman, P. Pandey, C.K. Jha, A. Aeron, eds.). Springer International Publishing, Cham, Switzerland, 416 pp.

 

Dorn B., Musa T., Krebs H., Fried P.M., Forrer H.R. 2007. Control of late blight in organic potato production: evaluation of copperfree preparations under field, growth chamber and laboratory conditions. European Journal of Plant Pathology 119: 217–240. DOI: 10.1007/s10658-007-9166-0.

 

El-Mougy N.S., Abdel-Kader M.M. 2009. Salts application for suppressing potato early blight disease. [Zastosowanie soli w celu ograniczenia alternariozy ziemniaka]. Journal of Plant Protection Research 49 (4): 353–361. DOI: 10.2478/v10045-009-0055-8.

 

EPPO Bulletin 2008. Phytophthora infestans on potato. Bulletin OEPP/EPPO Bulletin 38 (3): 268–271.

 

Hadwiger L.A., McDonel H., Glawe D. 2015. Wild yeast strains as prospective candidates to induce resistance against potato late blight (Phytophthora infestans). American Journal of Potato Research 92 (3): 379–386. DOI: 10.1007/s12230-015-9443-y.

 

Hyakumachi M., Takahashi H., Matsubara Y., Someya N., Shimizu M., Kobayashi K., Nishiguchi M. 2014. Recent studies on biological control of plant diseases in Japan. Journal of General Plant Pathology 80 (4): 287–302. DOI: 10.1007/s10327-014-0524-4.

 

Khabbaz S.E., Zhang L., Cáceres L.A., Sumarah M., Wang A., Abbasi P.A. 2015. Characterisation of antagonistic Bacillus and Pseudomonas strains for biocontrol potential and suppression of damping-off and root rot diseases. Annals of Applied Biology 166 (3): 456–471. DOI: 10.1111/aab.12196.

 

Kowalska J. 2013. Metody zastąpienia miedzi w ochronie warzyw i ziół uprawianych w rolnictwie ekologicznym. http://www.ior. poznan.pl/plik,1708,sprawozdanie-zamieszczono-14-11-2013.pdf [dostęp: 01.09.2017].

 

Kurzawińska H., Mazur S. 2009. The evaluation of Pythium oligandrum and chitosan in control of Phytophthora infestans (Mont.) de Bary on potato plants. Folia Horticulturae 21 (2): 13–23.

 

Laitila A., Sarlin T., Kotaviita E., Huttunen T., Home S., Wilhelmson A. 2007. Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. Journal of Industrial Microbiology and Biotechnology 34 (11): 701–713. DOI: 10.1007/s10295-007-0241-5.

 

Leibinger W., Breuker B., Hahn M., Mendgen K. 1997. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology 87 (11): 1103–1110. DOI: 10.1094/PHYTO.1997.87.11.1103.

 

Martinez A., Cavello I., Garmendia G., Rufo C., Cavallito S., Vero S. 2016. Yeast from sub-Antartic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles 20 (5): 759–769. DOI: 10.1007/s00792-016-0865-3.

 

Moller L., Lerm B., Botha A. 2016. Interactions of arboreal yeast endophytes: an unexplored discipline. Fungal Ecology 22: 73–82. DOI: 10.1016/j.funeco.2016.03.003.

 

Olanya O.M., Larkin R.P. 2006. Efficacy of essential oils and biopesticides on Phytophthora infestans suppression in laboratory and growth chamber studies. Biocontrol Science and Technology 16 (9): 901–917. DOI: 10.1080/09583150600827918.

 

Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52: 347–375. DOI: 10.1146/annurev-phyto-082712-102340.

 

Remlein-Starosta D., Krzymińska J., Kowalska J., Bocianowski J. 2016. Evaluation of yeast-like fungi to protect Virginia mallow (Sida hermaphrodita) against Sclerotinia sclerotiorum. Canadian Journal of Plant Science 96 (2): 243–251. DOI: 10.1139/cjps-2015-0230.

 

Stephan D., Schmitt A., Martins Carvalho S., Seddon B., Koch E. 2005. Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. European Journal of Plant Pathology 112 (3): 235–246. DOI: 10.1007/s10658-005-2083-1.

 

Takenaka S. 2015. Studies on biological control mechanisms of Pythium oligandrum. Journal of General Plant Pathology 81 (6): 466–469. DOI: 10.1007/s10327-015-0620-0.

 

Vishniac H.S., Kurtzman C.P. 1992. Cryptococcus antarcticus sp. nov. and Cryptococcus albidosimilis sp. nov., basidoblastomycetes from Antarctic soils. International Journal of Systematic and Evolutionary Microbiology 42: 547–553.

Progress in Plant Protection (2018) 58: 63-67
First published on-line: 2018-03-26 11:38:18
http://dx.doi.org/10.14199/ppp-2018-008
Full text (.PDF) BibTeX Mendeley Back to list