Progress in Plant Protection

Reakcja pszenicy rosnącej na glebie zanieczyszczonej miedzią na doglebowe nawożenie krzemem
Response of wheat grown on copper-contaminated soil to soil silicon fertilisation

Aleksandra Zajączkowska, e-mail: a.zajaczkowska@iung.wroclaw.pl

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska

Jolanta Korzeniowska, e-mail: j.korzeniowska@iung.wroclaw.pl

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska
Abstract

Celem badań było sprawdzenie działania doglebowej aplikacji krzemu (Si) na złagodzenie stresu u dwóch odmian pszenicy spowodowanego nadmiarem miedzi (Cu) w glebie. Dwuletnie badania przeprowadzono w warunkach hali wegetacyjnej z wykorzystaniem wazonów o pojemności 2,3 kg gleby. Przed wypełnieniem wazonów glebę zanieczyszczono miedzią w postaci CuSO4 w dawce 200 mg/kg Cu. Krzem był aplikowany doglebowo przed siewem roślin w dawkach 200 i 400 mg/kg Si w postaci Na2SiO3. Jako rośliny testowe użyto dwóch odmian pszenicy – Lindbergh i Kandela. Zastosowana dawka Cu była toksyczna dla obu badanych odmian pszenicy i spowodowała spadek biomasy pędów. Doglebowa aplikacja Si ograniczyła negatywny wpływ miedzi tylko dla odmiany Lindbergh.

 

The aim of the study was to test the effect of soil silicon (Si) application to relieve stress in two cultivars of wheat caused by excess of copper (Cu) in the soil. Two-year research was carried out in greenhouse with the use of vases with a capacity of 2.3 kg of soil. Before filling the pots, the soil was contaminated with copper in the form of CuSO4 in dose of 200 mg/kg Cu. Silicon was applied to the soil before sowing the plants in doses of 200 and 400 mg/kg Si in the form of Na2SiO3. Two wheat cultivars were used as test plants – Lindbergh and Kandela. The applied dose of Cu was toxic for both cultivars and caused a reduction of the shoot biomass. The soil application of Si limited the negative effect of copper only in the case of the Lindbergh cultivar.

Key words
krzem; Si; aplikacja doglebowa; toksyczność miedzi; Cu; pszenica; silicon; Si; soil application; copper toxicity; Cu; wheat
References

Adrees M., Ali S., Rizwan M., Ibrahim M., Abbas F., Farid M., Zia-ur-Rehman M., Irshad M.K., Bharwana S.A. 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research 22 (11): 8148–8162. DOI: 10.1007/s11356-015-4496-5

 

Ali N.A., Bernal M.P., Ater M. 2002. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil 239 (1): 103–111. DOI: 10.1023/A:1014995321560

 

Ali S., Rizwan M., Ullah N., Bharwana S.A., Waseem M., Farooq M.A., Abbasi G.H., Farid M. 2016. Physiological and biochemical mechanisms of silicon-induced copper stress tolerance in cotton (Gossypium hirsutum L.). Acta Physiologiae Plantarum 38 (11): 262. DOI: 10.1007/s11738-016-2279-3

 

Anwaar S.A., Ali S., Ali S., Ishaque W., Farid M., Farooq M.A., Sharif M. 2015. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environmental Science and Pollution Research 22 (5): 3441–3450. DOI: 10.1007/s11356-014-3938-9

 

Bokor B., Vaculík M., Slováková Ľ., Masarovič D., Lux A. 2014. Silicon does not always mitigate zinc toxicity in maize. Acta Physiologiae Plantarum 36 (3): 733–743. DOI: 10.1007/s11738-013-1451-2

 

Bosnić D., Bosnić P., Nikolić D., Nikolić M., Samardžić J. 2019. Silicon and iron differently alleviate copper toxicity in cucumber leaves. Plants 8 (12): 554. DOI: 10.3390/plants8120554

 

Collin B., Doelsch E., Keller C., Cazevieille P., Tella M., Chaurand P., Pamfili F., Hazemann J.L., Meunier J.D. 2014. Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Environmental Pollution 187: 22–30. DOI: 10.1016/j.envpol.2013.12.024

 

Davis R.D., Beckett P.H.T., Wollan E. 1978. Critical levels of twenty potentially toxic elements in young spring barley. Plant and Soil 49 (2): 395–408. DOI: 10.1007/BF02149747

 

Ding X., Zhang S., Li S., Liao X., Wang R. 2013. Silicon mediated the detoxification of Cr on pakchoi (Brassica chinensis L.) in Cr-contaminated Soil. Procedia Environmental Sciences 18: 58–67. DOI: 10.1016/j.proenv.2013.04.009

 

Dresler S., Wójcik M., Bednarek W., Hanaka A., Tukiendorf A. 2015. The effect of silicon on maize growth under cadmium stress. Russian Journal of Plant Physiology 62 (1): 86–92. DOI: 10.1134/S1021443715010057

 

El-Beltagi H.S., Sofy M.R., Aldaej M.I., Mohamed H.I. 2020. Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12 (11): 4732. DOI: 10.3390/su12114732

 

Epstein E. 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America 91 (1): 11–17. DOI: 10.1073/pnas.91.1.11

 

Epstein E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50 (1): 641–664. DOI: 10.1146/annurev.arplant.50.1.641

 

Fageria N.K. 2001. Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an oxisol. Communications in Soil Science and Plant Analysis 32 (9–10): 1659–1676. DOI: 10.1081/CSS-100104220

 

Farooq M.A., Ali S., Hameed A., Ishaque W., Mahmood K., Iqbal Z. 2013. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety 96: 242–249. DOI: 10.1016/j.ecoenv.2013.07.006

 

Filipiak K., Wilkos S. 1995. Obliczenia statystyczne. Opis systemu AWAR. Wydawnictwo Instytutu Uprawy Nawożenia i Gleboznawstwa, Puławy, 52 ss.

 

Gruca-Królikowska S., Wacławek W. 2006. Metale w środowisku Cz. II. Wpływ metali ciężkich na rośliny. [Metals in the environment Part II. Effect of heavy metals on plants]. Chemia Dydaktyka Ekologia Metrologia / Chemistry Didactics Ecology Metrology 11 (1–2): 41–54.

 

Gu H.H., Zhan S.S., Wang S.Z., Tang Y.T., Chaney R.L., Fang X.H., Qiu R.L. 2012. Silicon mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil 350 (1–2): 193–204. DOI: 10.1016/j.chemosphere.2011.03.014

 

Guntzer F., Keller C., Meunier J.D. 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development 32 (1): 201–213. DOI: 10.1007/s13593-011-0039-8

 

Hussain I., Ashraf M.A., Rasheed R., Asghar A., Sajid M.A., Iqbal M. 2015. Exogenous application of silicon at the boot stage decreases accumulation of cadmium in wheat (Triticum aestivum L.) grains. Brazilian Journal of Botany 38 (2): 223–234. DOI: 10.1007/s40415-014-0126-6

 

Imtiaz M., Rizwan M.S., Mushtaq M.A., Ashraf M., Shahzad S.M., Yousaf B., Saeed D.A., Rizwan M., Nawaz M.A., Mehmood S., Tu S. 2016. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. Journal of Environmental Management 183: 521–529. DOI: 10.1016/j.jenvman.2016.09.009

 

International Standardization Organization. ISO 10390:2005. 2005. Soil Quality: Determination of pH. International Standardization Organization, Geneva, Switzerland.

 

Karczewska A. 2012. Ochrona gleb i rekultywacja terenów zdegradowanych. Wyd. II poprawione, rozszerzone. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, 390 ss. ISBN 978-83-7717-113-4.

 

Kaya C., Tuna A.L., Sonmez O., Ince F., Higgs D. 2009. Mitigation effects of silicon on maize plants grown at high zinc. Journal of Plant Nutrition 32 (10): 1788–1798. DOI: 10.1080/01904160903152624

 

Keller C., Rizwan M., Davidian J.C., Pokrovsky O.S., Bovet N., Chaurand P., Meunier J.D. 2015. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241 (4): 847–860. DOI: 10.1007/s00425-014-2220-1

 

Kłosowska K. 2010. Reakcje roślin na stres solny. [Plant responses to salinity]. Kosmos Problemy Nauk Biologicznych 59 (3–4): 539–550.

 

Koncewicz-Baran M., Gondek K. 2010. Zawartość pierwiastków śladowych w glebach użytkowanych rolniczo. [Content of trace elements in agricultural soils]. Infrastruktura i Ekologia Terenów Wiejskich 14: 65–74.

 

Korzeniowska J., Stanisławska-Glubiak E. 2003. Fitotoksyczne zawartości niektórych metali ciężkich w glebie. [Phytotoxic concentration of some heavy metals in soil]. Zeszyty Problemowe Postępów Nauk Rolniczych 493 (1): 167–173.

 

Korzeniowska J., Stanisławska-Glubiak E. 2015a. Comparison of 1 M HCl and Mehlich 3 for assessment of the micronutrient status of polish soils in the context of winter wheat nutritional demands. Communications in Soil Science and Plant Analysis 46 (10): 1263–1277. DOI: 10.1080/00103624.2015.1033537

 

Korzeniowska J., Stanislawska-Glubiak E. 2015b. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Environmental Science and Pollution Research 22 (15): 11648–11657. DOI: 10.1007/s11356-015-4439-1

 

Korzeniowska J., Stanislawska-Glubiak E., Lipinski W. 2019. Development of the limit values of micronutrient deficiency in soil determined using Mehlich 3 extractant for Polish soil conditions. Part I. Wheat. Soil Science Annual 70 (4): 314–323. DOI: 10.2478/ssa-2019-0029

 

Kowalska J., Tyburski J., Bocianowski J., Krzymińska J., Matysiak K. 2020. Methods of silicon application on organic spring wheat (Triticum aestivum L. spp. vulgare) cultivars grown across two contrasting precipitation years. Agronomy 10 (11): 1655. DOI: 10.3390/agronomy10111655

 

Kowalska J., Tyburski J., Jakubowska M., Krzymińska J. 2021. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon 13: 211–217. DOI: 10.1007/s12633-020-00414-4

 

Li L., Yan X., Li J., Tian Y., Ren P. 2021. Advances in cotton tolerance to heavy metal stress and applications to remediate heavy metal-contaminated farmland soil. Phyton-International Journal of Experimental Botany 90 (1): 35–50. DOI: 10.32604/phyton.2021.012276

 

Liang Y., Wong J.W.C., Wei L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58 (4): 475–483. DOI: 10.1016/j.chemosphere.2004.09.034

 

Liu C., Li F., Luo C., Liu X., Wang S., Liu T., Li X. 2009. Foliar application of two silica sols reduced cadmium accumulation in rice grains. Journal of Hazardous Materials 161 (2–3): 1466–1472. DOI: 10.1016/j.jhazmat.2008.04.116

 

Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15 (12): 1409–1416. DOI: 10.1080/00103628409367568

 

Mehrabanjoubani P., Abdolzadeh A., Sadeghipour H.R., Aghdasi M. 2015. Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes. Theoretical and Experimental Plant Physiology 27 (1): 19–29. DOI: 10.1007/s40626-014-0028-9

 

Michaud A.M., Bravin M.N., Galleguillos M., Hinsinger P. 2007. Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant and Soil 298 (1–2): 99–111. DOI: 10.1007/s11104-007-9343-0

 

Neumann D., Nieden U.Z. 2001. Silicon and heavy metal tolerance of higher plants. Phytochem 56 (7): 685–692. DOI: 10.1016/S0031-9422(00)00472-6

 

Oliva S.R., Mingorance M.D., Leidi E.O. 2011. Effects of silicon on copper toxicity in Erica andevalensis Cabezudo and Rivera: a potential species to remediate contaminated soils. Journal of Environmental Monitoring 13 (3): 591–596. DOI: 10.1039/c0em00549e

 

Polish Committee for Standardization. PN-R-04020:1994. 1994. Agrochemical Soil Analyse: Determination of Available Magnesium Content in Mineral Soils. Polish Committee for Standardization, Warsaw, Poland.

 

Polish Committee for Standardization. PN-R-04022:1996. 1996. Agrochemical Soil Analyse: Determination of Available Potassium Content in Mineral Soils. Polish Committee for Standardization, Warsaw, Poland.

 

Polish Committee for Standardization. PN-R-04033:1998. 1998. Soil and Mineral Soil Materials: Particle Size Distribution on Soil Classes. Polish Committee for Standardization, Warsaw, Poland.

 

Polish Committee for Standardization. PN-ISO-14235:2003. 2003. Soil Quality: Determination of Organic Carbon in Soil by Sulfochromic Oxidation. Polish Committee for Standardization, Warsaw, Poland.

 

Sienkiewicz-Cholewa U., Zajączkowska A. 2020. Rola i plonotwórcze efekty stosowania krzemu na przykładzie światowych badań. [The role and yield-forming effect of silicon application based on the example of global research]. Progress in Plant Protection 60 (4): 313–319. DOI: 10.14199/ppp-2020-034

 

Siwek M. 2008. Rośliny w skażonym metalami ciężkimi środowisku poprzemysłowym. Część II. Mechanizmy detoksyfikacji i strategie przystosowania roślin do wysokich stężeń metali ciężkich. [Plants in postindustrial site, contaminated with heavy metals. Part II. Mechanisms of detoxifi cation and strategies of plant adaptation to heavy metals]. Wiadomości Botaniczne 52 (3/4): 7–23.

 

Song A., Li P., Li Z., Fan F., Nikolic M., Liang Y. 2011. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant and Soil 344 (1–2): 319–333. DOI: 10.1007/s11104-011-0749-3

 

Tóth G., Hermann T., Da Silva M.R., Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implication for food safety. Environment International 88: 299–309. DOI: 10.1016/j.envint.2015.12.017

 

Vaculík M., Landberg T., Greger M., Luxová M., Stoláriková M., Lux A. 2012. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany 110 (2): 433–443. DOI: 10.1093/aob/mcs039

 

Vieira Filho L.O., Monteiro F.A. 2020. Silicon modulates copper absorption and increases yield of Tanzania guinea grass under copper toxicity. Environmental Science and Pollution Research 27 (25): 31221–31232. DOI: 10.1007/s11356-020-09337-4

 

Wu J.W., Shi Y., Zhu Y.X., Wang Y.C., Gong H.J. 2013. Mechanisms of enhanced heavy metal tolerance in plants by silicon: A review. Pedosphere 23 (6): 815–825. DOI: 10.1016/S1002-0160(13)60073-9

 

Yoshida S., Forno D.A., Cock J.H., Gomez K.A. 1976. Laboratory Manual for Physiological Studies of Rice. 3rd ed. The International Rice Research Institute, Los Baños, Laguna, Philippines, 83 ss.

 

Zajączkowska A., Korzeniowska J. 2020. Wpływ nawożenia krzemem na zmniejszenie szkodliwego wpływu metali ciężkich dla roślin. Studia i Raporty IUNG-PIB 63 (17): 179–197.

 

Zajączkowska A., Korzeniowska J., Sienkiewicz-Cholewa U. 2020. Effect of soil and foliar silicon application on the reduction of zinc toxicity in wheat. Agriculture 10 (11): 522. DOI: 10.3390/agriculture10110522

 

Zhao Y., Liu M., Guo L., Yang D., He N., Ying B., Wang Y. 2020. Influence of silicon on cadmium availability and cadmium uptake by rice in acid and alkaline paddy soils. Journal of Soils and Sediments 20: 2343–2353. DOI: 10.1007/s11368-020-02597-0

Progress in Plant Protection (2021) 61: 31-39
First published on-line: 2021-03-01 15:17:40
http://dx.doi.org/10.14199/ppp-2021-004
Full text (.PDF) BibTeX Mendeley Back to list