Progress in Plant Protection

Biologiczne zwalczanie chwastów – perspektywy i ograniczenia
Biological weed control – prospects and limitations

Kinga Cholajda, e-mail: k.cholajda@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Kinga Matysiak, e-mail: k.matysiak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Roman Kierzek, e-mail: r.kierzek@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Joanna Krzymińska, e-mail: j.krzyminska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

Wycofywanie wielu substancji chemicznych, których zadaniem było ograniczanie występowania chorób, szkodników i chwastów, skłania środowisko naukowe do podjęcia intensywnych działań opartych na poszukiwaniu przyjaznych środowisku i nietoksycznych dla ludzi i zwierząt czynników biologicznych, które zapewniłyby zdrowotność i stabilne plonowanie roślinom uprawnym. W biologicznym zwalczaniu chwastów wykorzystuje się jednego lub więcej naturalnych wrogów (roztoczy, owadów, patogenów) na konkretny gatunek chwastu. Najważniejszym wyzwaniem w biologicznych metodach zwalczania chwastów jest zdefiniowana orientacja czynnika biologicznego na jeden gatunek (rzadziej rodzinę) chwastu. W dostępnej literaturze naukowej, coraz częściej spotyka się badania oceniające przydatność różnego rodzaju organizmów rodzimych lub obcych, które mogłyby być wykorzystane jako biologiczne środki zwalczające niektóre gatunki chwastów, a tym samym stanowiłyby uzupełnienie metod konwencjonalnych (głównie mechanicznych). Istotnym ograniczeniem w badaniach nad biologicznym zwalczaniem chwastów jest pracochłonność, dokładność badawcza i duża wiedza o możliwych interakcjach pomiędzy organizmami. Z tego powodu postęp w tym obszarze jest bardzo powolny i obarczony dużym ryzykiem niepowodzenia. W pracy dokonano przeglądu literatury dotyczącej możliwości zwalczania rodzimych gatunków chwastów metodami biologicznymi.

 

The withdrawal of many chemical substances whose task was to reduce the occurrence of diseases, pests and weeds, prompts the scientific community to undertake intensive activities based on the search for biological agents that are environmentally friendly and non-toxic to humans and animals, which would ensure health and stable yield of crops. Biological weed control uses one or more natural enemies (mites, insects, pathogens) per species of weed. The most important challenge in biological methods of weed control is the defined orientation of a biological factor on one species (less often a family) of weeds. In the available scientific literature, there are more and more studies assessing the suitability of various types of native or foreign organisms that could be used as biological agents for controlling some weed species, and thus complement conventional (mainly mechanical) methods. A significant limitation in research on biological weed control is labour consumption, research accuracy and extensive knowledge of possible interactions between organisms. For this reason, progress in this area is very slow and carries a high risk of failure. The paper reviews the literature on the possibility of controlling native weeds with biological methods.

Key words
metoda biologiczna klasyczna; bioherbicydy; mykoherbicydy; allelopatia; classical biological control; bioherbicides; mycoherbicides; allelopathy
References

Abbas T., Zahir Z.A., Naveed M., Kremer R.J. 2017. Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Advances in Agronomy 147: 239–280. DOI: 10.1016/bs.agron.2017.10.005

 

Abu-Dieyeh M., Watson A. 2007. Efficacy of Sclerotinia minor for dandelion control: effect of dandelion accession, age and grass competition. Weed Research 47 (1): 63–72. DOI: 10.1111/j.1365-3180.2007.00542.x

 

Adamczewski K. 2014. Odporność chwastów na herbicydy. Wydawnictwo Naukowe PWN, Warszawa, 272 ss.

 

Adamczewski K., Dobrzański A. 2012. Przyszłość herbologii w zmieniającym się rolnictwie. [Future for weed sciences in changing agriculture]. Progress in Plant Protection 52 (4): 867–878. DOI: 10.14199/ppp-2012-149

 

Adetunji C.O., Oloke J.K., Bello O.M., Pradeep M., Jolly R.S. 2019. Isolation, structural elucidation and bioherbicidal activity of an eco-friendly bioactive 2-(hydroxymethyl) phenol, from Pseudomonas aeruginosa (C1501) and its ecotoxicological evaluation on soil. Environmental Technology and Innovation 13: 304–317. DOI: 10.1016/j.eti.2018.12.006

 

Adetunji C.O., Oloke J.K., Mishra P., Oluyori A.P., Jolly R.S., Bello O.M. 2018. Mellein, a dihydroisocoumarin with bio herbicidal activity from a new strain of Lasiodiplodia pseudotheobromae C1136. Beni-Suef University Journal of Basic Applied Sciences 7 (4): 505–510. DOI: 10.1016/j.bjbas.2018.06.001

 

Adetunji C.O., Oloke J.K., Prasad G.S., Adejumo I.O. 2017. Effect of Lasiodiplodia pseudotheobromae isolates, a potential bioherbicide for Amaranthus hybridus L. in maize culture. Notulae Scientia Biologicae 9 (1): 131–137. DOI: 10.15835/nsb9110018

 

Anonymus 2020. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_pl [dostęp: 04.03.2021].

 

Bailey K.L. 2014. The bioherbicide approach to weed control using plant pathogens. s. 245–266. W: Integrated Pest Management: Current Concepts and Ecological Perspective. Elsevier Academic Press Inc., San Diego, CA. DOI: 10.1016/B978-0-12-398529-3.00014-2

 

Bailey K.L., Boyetchko S.M., Langle T. 2010. Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control 52 (3): 221–229. DOI: 10.1016/j.biocontrol.2009.05.003

 

Batish D.R., Singh H.P., Kohli R.K., Saxena D.B., Kaur S. 2002. Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa. Environmental and Experimental Botany 47 (2): 149–155. DOI: 10.1016/S0098-8472(01)00122-8

 

Baudoin A.B.A.M., Abad R.G., Kok L.T., Bruckart W.L. 1993. Field evaluation of Puccinia carduorum for biological control of musk thistle. Biological Control 3 (1): 53–60. DOI: 10.1006/bcon.1993.1009

 

Blossey B., Dávalos A., Simmons W., Ding J. 2018. A proposal to use plant demographic data to assess potential weed biological control agents impacts on non-target plant populations. BioControl 63: 461–473. DOI: 10.1007/s10526-018-9886-4

 

Boczek J. 1996. Stan i perspektywy walki biologicznej z chwastami. Postępy Nauk Rolniczych 4: 77–89.

 

Briese D.T. 2000. Classical biological control. s. 161–192. W: Australian Weed Management Systems (B.M. Sindel, red.). RG & FJ Richardson, Melbourne.

 

Cavalieri A., Caporali F. 2010. Effects of essential oils of cinnamon, lavender and peppermint on germination of Mediterranean weeds. Allelopathy Journal 25 (2): 441–452.

 

Charudattan R. 2001. Biological control of weeds by means of plant pathogens: Significance for integrated weed management in modern agro-ecology. BioControl 46: 229–260. DOI: 10.1023/A:1011477531101

 

Charudattan R., Walker H.L. 1982. Biological control of weeds with plant pathogens. John Wiley and Sons, New York, USA, 239 ss.

 

Cimmino A., Andolfi A., Zonno M.C., Avolio F., Santini A., Tuzi A., Berestetskyi A., Vurro M., Evidente A. 2013. Chenopodolin: a phytotoxic unrearranged ent-primaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol. Journal of Natural Products 76 (7): 1291–1297. DOI: 10.1021/np400218z

 

Dahiya A., Sharma R., Sindhu S., Sindhu S.S. 2019. Resource partitioning in the rhizosphere by inoculated Bacillus spp. towards growth stimulation of wheat and suppression of wild oat (Avena fatua L.) weed. Physiology and Molecular Biology of Plants 25 (6): 1483–1495. DOI: 10.1007/s12298-019-00710-3

 

Devi N.M., Mayanglambam B., Thangjam B. 2020. Biological control of weed. Biotica Research Today 2 (5): 341–344.

 

Dudai N., Larkov O., Putievsky E., Lerner H.R., Ravid U., Lewinsohn E., Mayer A.M. 2000. Biotransformation of constituents of essential oils by germinating wheat seeds. Phytochemistry 55 (5): 375–382. DOI: 10.1016/S0031-9422(00)00333-2

 

Dudai N., Poljakoff-Mayber A., Mayber A.M., Putievsky E., Lerner H.R. 1999. Essential oils as allelochemicals and their potential use as bioherbicides. Journal of Chemical Ecology 25: 1079–1089. DOI: 10.1023/A:1020881825669

 

Evans H.C. 2013. Biological control of weeds with fungi. W: The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research) (K. Esser, red.). XI Agricultural Applications 2nd edition (F. Kempken, volume red.). Springer, Heidelberg, New York, Dordrecht, London, 407 ss. ISBN 978-3-642-36820-2. DOI: 10.1007/978-3-642-36821-9

 

Gala-Czekaj D., Jop B., Synowiec A. 2018. Wpływ mączki z nasion i okwiatu barszczu Sosnowskiego (Heracleum sosnowskyi Manden.) na początkowy wzrost kukurydzy i dwóch gatunków chwastów. Fragmenta Agronomica 35 (1): 29–39. DOI: 10.26374/fa.2018.35.03

 

Glare T., Caradus J., Gelernter W., Jackson T., Keyhani N., Kohl J., Marrone P., Morin L., Stewart A. 2012. Have biopesticides come of age? Trends in Biotechnology 30 (5): 250–258. DOI: 10.1016/j.tibtech.2012.01.003

 

Hallet S.G. 2005. Where are the bioherbicides. Weed Science 53 (3): 404–415. DOI: 10.1614/WS-04-157R2

 

Harding D.P., Raizada M.N. 2015. Controlling weeds with fungi, bacteria and viruses: a review. Frontiers in Plant Science 6: 659. DOI: 10.3389/fpls.2015.00659

 

Hazrati H., Saharkhiz M.J., Moein M., Khoshghalb H. 2018. Phytotoxic effects of several essential oils on two weed species and tomato. Biocatalysis and Agricultural Biotechnology 13: 204–212. DOI: 10.1016/j.bcab.2017.12.014

 

Ibanez M.D., Blaszquez M.A. 2019. Ginger and turmeric essential oils for weed control and food crop protection. Plants 8 (3): 59–78. DOI: 10.3390/plants8030059

 

Imaizumi S., Nishino T., Miyabe K., Fujimori T., Yamada M. 1997. Biological control of annual bluegrass (Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. poae (JT-P482). Biological Control 8 (1): 7–14. DOI: 10.1006/bcon.1996.0475

 

Jasienuik M., Brule-Babel A.L., Morrison I.N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Science 44 (1): 176–193. DOI: 10.1017/S0043174500093747

 

Julien M.H., Griffiths M.W. 1998. Biological control of weeds: a world catalogue of agents and their target weeds. CABI International, Wallingford, 223 ss.

 

Kennedy A.C., Elliott L.F., Young F.L., Douglas C.L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Science Society of America Journal 55 (3): 722–727. DOI: 10.2136/sssaj1991.03615995005500030014x

 

Kennedy A.C., Johnson B.N., Stubbs T.L. 2001. Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Science 49 (6): 792–797. DOI: 10.1614/0043-1745(2001)049[0792:HROADR]2.0.CO;2

 

Kiewnick S. 2007. Practicalities of developing and registering microbial biological control agents. Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2: 1–11. DOI: 10.1079/PAVSNNR20072013

 

Kim W.C., Rhee I.K. 2012. Functional mechanism of plant growth retardation by Bacillus subtilis IJ-31 and its allelochemicals. Journal of Microbiology and Biotechnology 22 (10): 1375–1380. DOI: 10.4014/jmb.1207.07031

 

Kremer R.J., Begonia M.F.T., Stanley L., Lanham E.T. 1990. Characterization of rhizobacteria associated with weed seedlings. Applied and Environmental Microbiology 56 (6): 1649–1655. DOI: 10.1128/AEM.56.6.1649-1655.1990

 

Kumar A., Verma V.C., Gond S.K., Kumar V., Kharwar R.N. 2009. Bio-control potential of Cladosporium sp. (MCPL-461), against a noxious weed Parthenium hysterophorus L. Journal of Environmental Biology 30 (2): 307–312.

 

Macdonald L.A.W., Wissel C. 1989. Costing the initial clearance of alien Acacia species invading fynbos vegetation. South African Journal of Plant and Soil 6 (1): 39–45. DOI: 10.1080/02571862.1989.10634477

 

Madariaga R.B., Scharen A.L. 1985. Septoria tritici blotch in Chilean wild oat. Plant Disease 69 (2): 126–127.

 

McFadyen R.E.C. 1998. Biological control of weeds. Annual Review of Entomology 43: 369–393. DOI: 10.1146/annurev.ento.43.1.369

 

Mohan Babu R., Sajeena A., Vidhyasekaran P., Seetharaman K., Reddy M.S. 2003. Characterization of a phytotoxic glycoprotein produced by Phoma eupyrena – A pathogen on water lettuce. Phytoparasitica 31: 265–274. DOI: 10.1007/BF02980835

 

Moss S.R., Rubin B. 1993. Herbicide-resistant weeds: a worldwide perspective. Journal of Agricultural Science 120 (2): 141–148. DOI: 10.1017/S0021859600074177

 

Müller-Schärer H., Scheepens P.C., Greaves M.P. 2000. Biological control of weeds in European crops: recent achievements and future work. Weed Research 40: 83–98. DOI: 10.1046/j.1365-3180.2000.00170.x

 

Naylor R.E.L. (red.). 2002. Weed Management Handbook. Blackwell Publishing, Oxford, UK, 423 ss.

 

Neumann S., Boland G.J. 1999. Influence of selected adjuvants on disease severity by Phoma herbarum on dandelion (Taraxacum officinale). Weed Technology 13 (4): 675–679. DOI: 10.1017/S0890037X00042068

 

Park J.M., Radhakrishnan R., Kang S.M., Lee I.J. 2015. IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian Journal of Microbiology 55 (2): 207–212. DOI: 10.1007/s12088-015-0515-y

 

Phour M. 2012. Biological control of Phalaris minor in wheat (Triticum aestivum L.) using rhizosphere bacteria. Master’s thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana.

 

Phour M., Ghai A., Rose G., Dhull N., Sindhu S.S. 2018. Role of aminolevulinic acid in stress adaptation and crop productivity. International Journal of Current Microbiology and Applied Sciences 7 (5): 1516–1524. DOI: 10.20546/ijcmas.2018.705.178

 

Qiming X., Haidong C., Huixian Z., Daqiang Y. 2006. Allelopathic activity of volatile substance from submerged macrophytes on Microcystin aeruginosa. Acta Ecologica Sinica 26 (11): 3549–3554. DOI: 10.1016/S1872-2032(06)60054-1

 

Quail J.W., Ismail N., Pedras M.S.C., Boyetchko S.M. 2002. Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallographica Section C: Structural Chemistry 58 (5): 268–271. DOI: 10.1107/s0108270102004432

 

Radhakrishnan R., Alqarawi A.A., Abd Allah E.F. 2018. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety 158: 131–138. DOI: 10.1016/j.ecoenv.2018.04.018

 

Rice E.L. 1984. Allelopathy (Second ed.). Academic Press Inc., Orlando, FL, USA, 422 ss.

 

Riddle G.E., Burpee L.L., Boland G.J. 1991. Virulence of Sclerotinia sclerotiorum and S. minor on dandelion (Taraxacum officinale). Weed Science 39 (1): 109–118. DOI: 10.1017/s0043174500057969

 

Scheepens P.C. 1987. Joint action of Cochliobolus lunatus and atrazine on Echinochloa crus-galli (L.) Beauv. Weed Research 27 (1): 43–47. DOI: 10.1111/j.1365-3180.1987.tb00735.x

 

Scheepens P., Kempenaar C., Andreasen C., Eggers T.H., Netlabd J., Vurro M. 1997. Biological control of the annual weed Chenopodium album, with emphasis on the application of Ascochyta caulina as a microbial herbicide. Integrated Pest Management Reviews 2: 71–76. DOI: 10.1023/A:1018484530615

 

Scheepens P., Müller-Schärer H., Kempenaar C. 2001. Opportunities for biological weed control in Europe. BioControl 46: 127–138. DOI: 10.1023/A:1011445721800

 

Scheepens P.C., van Zon H.C.J. 1982. Microbial herbicides. s. 623–641. W: Microbial and Viral Herbicides (E. Kurstak, red.). Marcel Dekker, New York, 720 ss.

 

Schwarzländer M., Hinz H.L., Winston R.L., Day M.D. 2018. Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl 63: 319–331. DOI: 10.1007/s10526-018-9890-8

 

Sekutowski T. 2010. Alleloherbicydydy i bioherbicydy – mit, czy rzeczywistość. [Alleloherbicides and bioherbicides – myth or reality?]. Journal of Research and Applications in Agricultural Engineering 55 (4): 84–90.

 

Shaw R.H., Ellison C.A., Marchante H., Pratt C.F., Schaffner U., Sforza R.F.H., Deltoro V. 2018. Weed biological control in the European Union: from serendipity to strategy. BioControl 63: 333–347. DOI: 10.1007/s10526-017-9844-6

 

Singh H.P., Batish D.R., Kohli R.K. 2003. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Critical Reviews in Plant Sciences 22 (3–4): 239–311. DOI: 10.1080/713610858

 

Skrzypczak G., Pudełko J. 2003. Chwasty i ich zwalczanie – aspekty integrowanej ochrony i zrównoważonego rolnictwa. [Weeds and their control – aspects of integrated pest management and sustainable agriculture]. Zeszyty Problemowe Postępów Nauk Rolniczych 490: 227–233.

 

Smith L., de Lillo E., Amrine J.W. 2010. Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Experimental and Applied Acarology 51: 115–149. DOI: 10.1007/s10493-009-9299-2

 

Sobhian R., McClay A., Hasan S., Peterschmitt M., Hughes R.B. 2004. Safety assessment and potential of Cecidophyes rouhollahi (Acari, Eriophyidae) for biological control of Galium spurium (Rubiaceae) in North America. Journal of Applied Entomology 128 (4): 258–266. DOI: 10.1111/j.1439-0418.2004.00818.x

 

Stokłosa A. 2006. Bioherbicydy i alleloherbicydy w walce z chwastami. [Bioherbicides and alleloherbicides as weed control methods]. Postępy Nauk Rolniczych 53 (6): 41–52.

 

Synowiec A., Smęda A., Adamiec J., Kalemba D. 2016. Wpływ mikrokapsułkowanych olejków eterycznych na początkowy wzrost kukurydzy (Zea mays) i chwastów (Echinochloa crus-galli i Chenopodium album). [The effect of microencapsulated essential oils on the initial growth of maize (Zea mays) and common weeds (Echinochloa crus-galli and Chenopodium album). Progress in Plant Protection 56 (3): 372–378. DOI: 10.14199/ppp-2016-060

 

Taban A., Rahimi M.J., Saharkhiz M.J., Hadian J., Zomorodian K. 2013a. The efficacy of Satureja khuzistanica essential oil treatment in reducing Escherichia coli O 157: H 7 load on alfalfa seeds prior to sprouting. Journal of Food Safety 33 (2): 121–127. DOI: 10.1111/jfs.12031

 

Taban A., Saharkhiz M.J., Hadian J. 2013b. Allelopathic potential of essential oils from four Satureja spp. Biological Agriculture Horticulture 29 (4): 244–257. DOI: 10.1080/01448765.2013.830275

 

Taban A., Saharkhiz M.J., Hooshmandi M. 2017. Insecticidal and repellent activity of three Satureja species against adult red flour beetles, Tribolium castaneum (Coleoptera: Tenebrionidae). Acta Ecologica Sinica 37 (3): 201–206. DOI: 10.1016/j.chnaes.2017.01.001

 

TeBeest D.O. 1996. Biological control of weeds with plant pathogens and microbial pesticides. Advances in Agronomy 56: 115–137. DOI: 10.1016/S0065-2113(08)60180-7

 

Tisdell C.A., Auld B.A., Menz K.M. 1984. On assessing the value of biological control of weeds. Protection Ecology 6: 169–179.

 

Tworkoski T. 2002. Herbicide effects of essential oils. Weed Science 50 (4): 425–431. DOI: 10.1614/0043-1745(2002)050[0425:HEOEO]2.0.CO;2

 

Vogelgsang S., Watson A.K., Ditommaso A., Hurle K. 1998. Effect of the pre-emergence bioherbicide Phomopsis convolvulus on seedling and established plant growth of Convolvulus arvensis. Weed Research 38 (3): 175–182. DOI: 10.1046/j.1365-3180.1998.00088.x

 

Vurro M., Zonno M.C., Evidente A., Andolfini A., Montemurro P. 2001. Enhancement of efficacy of Ascochyta caulina to control Chenopodium album by use of phytotoxins and reduced rates of herbicides. Biological Control 21 (2): 182–190. DOI: 10.1006/bcon.2001.0933

 

Waterhouse D.F.W., Norris K.R. 1987. Biological Control: Pacific Prospects. Inkata Press, 454 ss. ISBN 978-0909-605-506.

 

Weaver M.A., Lyn M.E., Boyette C.D., Hoagland R.E. 2007. Bioherbicydes for weed control. s. 93–110. W: Non-Chemical Weed Management (M.K. Upadhyaya, R.E. Blackshaw, red.). CABI International, Cambrigde, MA, USA.

 

Zhang W., Watson A.K. 1997. Host range of Exserohilum monoceras, a potential bioherbicide for the control of Echinochloa species. Canadian Journal of Botany 75 (5): 685–692. DOI: 10.1139/b97-077

Progress in Plant Protection (2021) 61: 103-112
First published on-line: 2021-04-29 14:24:11
http://dx.doi.org/10.14199/ppp-2021-011
Full text (.PDF) BibTeX Mendeley Back to list