Progress in Plant Protection

Możliwości wykorzystania drożdży w biologicznej ochronie roślin
Possibilities of using yeast in biological plant protection

Kinga Mazurkiewicz-Zapałowicz, e-mail: kmazurkiewicz@zut.edu.pl

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Nauk o Żywności i Rybactwa, Królewicza 4, 71-550 Szczecin, Polska

Roxana Ryplewska, e-mail: roxarypl@gmail.com

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Nauk o Żywności i Rybactwa, Królewicza 4, 71-550 Szczecin, Polska

Anna Biedunkiewicz, e-mail: alibi@uwm.edu.pl

Uniwersytet Warmińsko-Mazurski w Olsztynie, Wydział Biologii i Biotechnologii, Oczapowskiego 1A, 10-719 Olsztyn, Polska

Łukasz Łopusiewicz, e-mail: lukasz.lopusiewicz@zut.edu.pl

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Nauk o Żywności i Rybactwa, Janickiego 35, 71-270 Szczecin, Polska

Hanna Gawińska-Urbanowicz, e-mail: h.gawinska@wp.pl

Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Oddział w Boninie, Bonin 3, 76-005 Bonin, Polska

Joanna Krzymińska, e-mail: j.krzyminska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

Aktywność metaboliczna drożdży, a także ich powszechne występowanie w środowisku, czyni z nich potencjalne czynniki, które mogą znaleźć zastosowanie w biologicznej ochronie roślin. W artykule przedstawiono prozdrowotne działanie drożdży na rośliny. Działanie prozdrowotne drożdży związane jest ze zdolnością dostarczania roślinom rozpuszczonych składników odżywczych. Drożdże mogą również pośrednio aktywować mechanizmy obronne roślin i poprawiać ich zdrowotność. Szczególną rolę odgrywają tu właściwości bioremediacyjne i antagonizm drożdży wobec wielu ważnych gospodarczo fitopatogenów. Badania wskazują również, że drożdże (Pichia membranifaciens, Pichia fermentans i Meyrozyma guilliermondii) w warunkach in vitro wykazują antagonistyczne oddziaływanie na fitopatogeny (Alternaria alternata, Rhizoctonia solani i Colletotrichum coccodes). Wyżej wymienione mechanizmy działania drożdży mogą być wykorzystane do tworzenia wysokiej jakości bionawozów i biopestycydów.

 

The metabolic activity of yeasts, as well as their common occurrence in the environment make them a potential source of compounds that can be used in biological plant protection. The article presents health-promoting effects of yeast on plants. The pro-health effect of yeast is related to the ability to provide plants with dissolved nutrients. Yeasts can also indirectly activate plant defence mechanisms and improve plant health status. The bioremediation properties and antagonism of yeasts against numerous economically important phytopathogens play an important role here. The research is also indicated that yeasts (Pichia membranifaciens, Pichia fermentans and Meyrozyma guilliermondii) in vitro show an antagonistic activity against their phytopathogens (Alternaria alternata, Rhizoctonia solani and Colletotrichum coccodes). All the mentioned aspects of yeast activity can be useful in creating high-quality biofertilizers and biopesticides.

Key words
drożdże; mechanizm działania; biologiczna ochrona roślin; yeasts; action mechanism; biopesticides
References

Bajaj B.K., Raina S., Singh S. 2013. Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. Journal of Basic Microbiology 53 (8): 645–656. DOI: 10.1002/jobm.201200187

 

Banjara N., Nickerson K.W., Suhr M.J., Hallen-Adams H.E. 2016. Killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. International Journal of Food Microbiology 222: 23–29. DOI: 10.1016/j.ijfoodmicro.2016.01.016

 

Belda I., Ruiz J., Alonso A., Marquina D., Santos A. 2017. The biology of Pichia membranifaciens killer toxins. Toxins 9 (4): 112. DOI: 10.3390/toxins9040112

 

Bempelou E.D., Vontas J.G., Liapis K.S., Ziogas V.N. 2018. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by the epiphytic yeasts Rhodotorula glutinis and Rhodotorula rubra. Ecotoxicology 27 (10): 1368–1378. DOI: 10.1007/s10646-018-1992-7

 

Bencheqroun S.K., Bajji M., Massart S., Labhilili M., El Jaafari S., Jijakli M.H. 2007. In vitro and in situ study of postharvest apple blue mould biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology and Technology 46 (2): 128–135. DOI: 10.1016/j.postharvbio.2007.05.005

 

Biedunkiewicz A., Sucharzewska E., Kulesza K., Nowacka K., Kubiak D. 2020. Phyllosphere of submerged plants in bathing lakes as a reservoir of fungi - potential human pathogens. Microbial Ecology 79 (3): 552–561. DOI: 10.1007/s00248-019-01447-y

 

Bryk H., Broniarek-Niemiec A. 2021. Wykaz fungicydów i bakteriocydów rekomendowanych do integrowanej produkcji roślin w uprawach sadowniczych. INHort, Skierniewice, 28 ss.

 

Chanchaichaovivat A., Ruenwongsa P., Panijpan B. 2007. Screening and identification of yeast strains from fruits and vegetables: Potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biological Control 42 (3): 326–335. DOI: 10.1016/j.biocontrol.2007.05.016

 

Chen P.-H., Chou J.-Y. 2017. Screening and identification of yeasts antagonistic to pathogenic fungi show a narrow optimal pH range for antagonistic activity. Polish Journal of Microbiology 66 (1): 101–106. DOI: 10.5604/17331331.1234997

 

Cordero-Bueso G., Mangieri N., Maghradze D., Foschino R., Valdetara F., Cantoral J.M., Vigentini I. 2017. Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens. Frontiers in Microbiology 8: 2025. DOI: 10.3389/fmicb.2017.02025

 

Dai Y.-J., Ji W.-W., Chen T., Zhang W.-J., Liu Z.-H., Ge F., Sheng Y. 2010. Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. Journal of Agricultural and Food Chemistry 58 (4): 2419–2425. DOI: 10.1021/jf903787s

 

de Ullivarri M.F., Mendoza L.M., Raya R.R. 2018. Characterization of the killer toxin KTCf20 from Wickerhamomyces anomalus, a potential biocontrol agent against wine spoilage yeasts. Biological Control 121: 223–228. DOI : 10.1016/j.biocontrol.2018.03.008

 

Di Francesco A., Zajc J., Gunde-Cimerman N., Aprea E., Gasperi F., Placì N., Caruso F., Baraldi E. 2020. Bioactivity of volatile organic compounds by Aureobasidium species against gray mold of tomato and table grape. World Journal of Microbiology and Biotechnology 36: 171. DOI: 10.1007/s11274-020-02947-7

 

Droby S., Vinokur V., Weiss B., Cohen L., Daus A., Goldschmidt E.E., Porat R. 2002. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 92 (4): 393–399. DOI: 10.1094/PHYTO.2002.92.4.393

 

El-Banna A.A., El-Sahn M.A., Shehata M.G. 2011. Yeasts producing killer toxins: An overview. Alexandria Journal of Food Science and Technology 8 (2): 41–53.

 

Ferramola M.I.S., Benuzzi D., Calvente V., Calvo J., Sansone G., Cerutti S., Raba J. 2013. The use of siderophores for improving the control of postharvest diseases in stored fruits and vegetables. s. 1385–1394. W: Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education (A. Méndez-Vilas, red.). Formatex Research Center, Badajoz, Spain.

 

Forouzangohar M., Haghnia G.H., Koocheki A. 2005. Organic amendments to enhance atrazine and metamitron degradation in two contaminated soils with contrasting textures. Soil and Sediment Contamination 14 (4): 345–355. DOI: 10.1080/15320380590954060

 

Freimoser F.M., Rueda-Mejia M.P., Tilocca B., Migheli Q. 2019. Biocontrol yeasts: mechanisms and applications. World Journal of Microbiology and Biotechnology 35: 154. DOI: 10.1007/s11274-019-2728-4

 

Giobbe S., Marceddu S., Scherm B., Zara G., Mazzarello V.L., Budroni M., Migheli Q. 2007. The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Research 7 (8): 1389–1398. DOI: 10.1111/j.1567-1364.2007.00301.x

 

Gore-Lloyd D., Sumann I., Brachmann A.O., Schneeberger K., Ortiz-Merino R.A., Moreno-Beltrán M., Schläfli M., Kirner P., Santos Kron A., Rueda-Mejia M.P., Somerville V., Wolfe K.H., Piel J., Ahrens C.H., Henk D., Freimoser F.M. 2019. Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Molecular Microbiology 112 (1): 317–332. DOI: 10.1111/mmi.14272

 

Górski R., Kleiber T., Sobieralski K. 2017. The influence of effective microorganisms application on the chemical composition in lettuce grown under cover. [Wpływ zastosowania efektywnych mikroorganizmów na skład chemiczny sałaty uprawianej pod osłonami]. Ecological Chemistry and Engineering A 24 (1): 113–121. DOI: 10.2428/ecea.2017.24(1)9

 

Grebenisan I., Cornea P., Mateescu R., Cimpeanu C., Olteanu V., Campenu G., Stefan L.A., Oancea F., Lupu C. 2006. Metschnikowia pulcherrima, a new yeast with potential for biocontrol of postharvest fruit rots. ISHS Acta Horticulturae 767: XXVII International Horticultural Congress – IHC2006: International Symposium on Sustainability through Integrated and Organic Holticulture. Proceedings of the Acta Horticulturae. International Society for Horticultural Science, Seoul, Korea, August 13, 2006, 767: 355–360. DOI: 10.17660/ActaHortic.2008.767.38

 

Grzegorczyk M., Szalewicz A., Żarowska B., Połomska X., Wątorek W., Wojtatowicz M. 2015. Drobnoustroje w biologicznej ochronie przed chorobami grzybowymi. [Microorganisms in biological control of phytopathogenic fungi]. Acta Scientiarum Polonorum, Biotechnologia 14 (2): 19–42.

 

Hernández-Fernández M., Cordero-Bueso G., Ruiz-Muñoz M., Cantoral J.M. 2021. Culturable yeasts as biofertilizers and biopesticides for a sustainable agriculture: A comprehensive review. Plants 10 (5): 822. DOI: 10.3390/plants10050822

 

Holkenbrink C., Ding B.J., Wang H.L., Dam M.I., Petkevicius K., Kildegaard K.R., Wenning L., Sinkwitz C., Lorántfy B., Koutsoumpeli E., França L., Pires M., Bernardi C., Urrutia W., Mafra-Neto A., Ferreira B.S., Raptopoulos D., Konstantopoulou M., Löfstedt C., Borodina I. 2020. Production of moth sex pheromones for pest control by yeast fermentation. Metabolic Engineering 62: 312–321. DOI: 10.1016/j.ymben.2020.10.001

 

Holtappels D., Fortuna K., Lavigne R., Wagemans J. 2021. The future of phage biocontrol in integrated plant protection for sustainable crop production. Current Opinion in Biotechnology 68: 60–71. DOI: 10.1016/j.copbio.2020.08.016

 

Janas R. 2009. Możliwości wykorzystania efektywnych mikroorganizmów w ekologicznych systemach produkcji roślin uprawnych. [Possibilities of using effective microorganisms in organic production systems of cultivated crops]. Problemy Inżynierii Rolniczej 17 (3): 111–119.

 

Janisiewicz W.J., Korsten L. 2002. Biological control of postharvest diseases of fruits. Annual Review of Phytopathology 40 (24): 411–441. DOI: 10.1146/annurev.phyto.40.120401.130158

 

Kačániová M., Kunová S., Sabo J., Ivanišová E., Žiarovská J., Felsöciová S., Terentjeva M. 2020. Identification of yeasts with mass spectrometry during wine production. Fermentation 6 (1): 5. DOI: 10.3390/fermentation6010005

 

Kasfi K., Taheri P., Jafarpour B., Tarighi S. 2018. Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Spanish Journal of Agricultural Research 16 (1): e1002. DOI: 10.5424/sjar/2018161-11378

 

Klein M.N., Kupper K.C. 2018. Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus. Food Microbiology 69: 1–10. DOI: 10.1016/j.fm.2017.07.008

 

Knight A.L., Witzgall P. 2013. Combining mutualistic yeast and pathogenic virus - a novel method for codling moth control. Journal of Chemical Ecology 39 (7): 1019–1026. DOI: 10.1007/s10886-013-0322-z

 

Kordowska-Wiater M. 2011. Drożdże jako czynniki ochrony biologicznej roślin. [Yeasts as biological control agents for plants]. Postępy Mikrobiologii/Advances in Microbiology 50 (2): 107–119.

 

Kordowska-Wiater M. 2015. Production of arabitol by yeasts: current status and future prospects. Journal of Applied Microbiology 119 (2): 303–314. DOI: 10.1111/jam.12807

 

Kowalska J., Drożdżyński D., Remlein-Starosta D., Sas L., Malusa E. 2012. Use of Cryptococcus albidus for controlling grey mould in the production and storage of organically grown strawberries. Journal of Plant Diseases and Protection 119 (5): 174–178. DOI: 10.1007/BF03356438

 

Kumar M., Ashraf S. 2017. Role of Trichoderma spp. as a biocontrol agent of fungal plant pathogens. s. 497–506. W: Probiotics and Plant Health (V. Kumar, M. Kumar, S. Sharma, R. Prasad, red.). Springer, Singapore, 600 ss. DOI: 10.1007/978-981-10-3473-2_23

 

Kurtzman C., Fell J.W., Boekhout T. 2011. The Yeasts: A Taxonomic Study. Elsevier Science, 2354 ss. ISBN 978-04445-21-491.

 

Kvakkestad V., Sundbye A., Gwynn R., Klingen I. 2020. Authorization of microbial plant protection products in the Scandinavian countries: A comparative analysis. Environmental Science and Policy 106 (2): 115–124. DOI: 10.1016/j.envsci.2020.01.017

 

Lew S., Lew M., Biedunkiewicz A., Szarek J. 2013. Impact of pesticide contamination on aquatic microorganism populations in the littoral zone. Archives of Environmental Contamination and Toxicology 64 (3): 399–409. DOI: 10.1007/s00244-012-9852-6

 

Liu J., Sui Y., Wisniewski M., Droby S., Liu Y. 2013. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology 167 (2): 153–160. DOI: 10.1016/j.ijfoodmicro.2013.09.004

 

Mannazzu I., Domizio P., Carboni G., Zara S., Zara G., Comitini F., Budroni M., Ciani M. 2019. Yeast killer toxins: from ecological significance to application. Critical Reviews in Biotechnology 39 (5): 603–617. DOI: 10.1080/07388551.2019.1601679

 

Mari M., Bautista-Baños S., Sivakumar D. 2016. Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biology and Technology 122: 70–81. DOI: 10.1016/J.POSTHARVBIO.2016.04.014

 

Maserti B., Podda A., Giorgetti L., Del Carratore R., Chevret D., Migheli Q. 2015. Proteome changes during yeast-like and pseudohyphal growth in the biofilm-forming yeast Pichia fermentans. Amino Acids 47 (6): 1091–1106. DOI: 10.1007/s00726-015-1933-1

 

Masih E.I., Paul B. 2002. Secretion of β-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Current Microbiology 44: 391–395. DOI: 10.1007/s00284-001-0011-y

 

Melchor R.L.A., Rosales V.G., Pérez M.C.G., Fernández S.P., Álvarez G.O., Mastache J.M.N. 2018. Effectiveness of carboxylic acids from Pichia membranifaciens against coffee rust. Ciência e Agrotecnologia 42 (1): 42–50. DOI: 10.1590/1413-70542018421018817

 

Murphy K.A., Tabuloc C.A., Cervantes K.R., Chiu J.C. 2016. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Scientific Reports 6: 22587. DOI: 10.1038/srep22587

 

Naumov G.I., Naumova E.S. 2009. Chromosomal differentiation of the sibling species Pichia membranifaciens and Pichia manshurica. Microbiology 78 (2): 214–217. DOI: 10.1134/S002626170902012X

 

Nowacka A., Hołodyńska-Kulas A. 2020. Pozostałości środków ochrony roślin w płodach rolnych (2016–2017). [Pesticide residues in agricultural crops (2016–2017)]. Progress in Plant Protection 60 (3): 201–231. DOI: 10.14199/ppp-2020-023

 

Pan M., Wei Y., Wang F., Liu T. 2020. Influence of plant species on biological control effectiveness of Myzus persicae by Aphidius gifuensis. Crop Protection 135: 105223. DOI: 10.1016/j.cropro.2020.105223

 

Paśmionka I., Kotarba K. 2015. Możliwości wykorzystania efektywnych mikroorganizmów w ochronie środowiska. [Possibile application of effective microorganisms in environmental protection]. Kosmos Problemy Nauk Biologicznych 64 (1): 173–184.

 

Perek A., Krzymińska J., Świerczyńska I. 2013. Porównanie antagonistycznego oddziaływania grzybów z rodzaju Trichoderma oraz grzybów drożdżoidalnych na patogeny z rodzaju Fusarium w warunkach in vitro. [Comparison of the antagonistic effect of Trichoderma spp. and yeasts on pathogenic Fusarium spp. in in vitro conditions]. Journal of Research and Applications in Agricultural Engineering 58 (4): 99–103.

 

Remlein-Starosta D., Krzymińska J., Kowalska J., Bocianowski J. 2016. Evaluation of yeast-fungi to protect Virginia mallow (Sida hermaphrodita) against Sclerotinia sclerotiorum. Canadian Journal of Plant Science 96 (2): 243–251. DOI: 10.1139/cjps-2015-0230

 

Ruiz-Moyano S., Hernández A., Galvan A.I., Córdoba M.G., Casquete R., Serradilla M.J., Martín A. 2020. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits. Food Microbiology 92: 103556. DOI: 10.1016/j.fm.2020.103556

 

Santos A., Marquina D. 2004. Killer toxin of Pichia membranifaciens and its possible use as a biocontrol agent against grey mould disease of grapevine. Microbiology 150 (8): 2527–2534. DOI: 10.1099/mic.0.27071-0

 

Singh B., Singh K. 2016. Microbial degradation of herbicides. Critical Reviews in Microbiology 42 (2): 245–261. DOI: 10.3109/1040841X.2014.929564

 

Słowik-Borowiec M., Szpyrka E., Podbielska M., Kurdziel A., Matyaszek A. 2012. Pozostałości środków ochrony roślin w niektórych warzywach korzeniowych i ziemniakach z terenu południowo-wschodniej Polski (2009–2011). [Pesticide residues in root vegetables and potatoes in south-eastern Poland (2009–2011)]. Polish Journal of Agronomy 11: 47–51.

 

Sosnowska D. 2013. Postępy w badaniach i wykorzystanie grzybów pasożytniczych w integrowanej ochronie roślin. [Progress in research and the use of pathogenic fungi in integrated plant protection]. Progress in Plant Protection/Postępy w Ochronie Roślin 53 (4): 747–750. DOI: 10.14199/ppp-2013-018

 

Sosnowska D. 2018. Konserwacyjna metoda biologiczna wsparciem integrowanej ochrony roślin i rolnictwa ekologicznego. [The contribution of consevation biological control method to integrated plant protection and organic farming]. Progress in Plant Protection 58 (4): 288–293. DOI: 10.14199/ppp-2018-040

 

Sosnowska D. 2019. Grzyby pasożytnicze i antagonistyczne w biologicznej ochronie roślin w Polsce. [Parasitic and antagonistic fungi in biological plant protection in Poland]. Progress in Plant Protection 59 (4): 223–231. DOI: 10.14199/ppp-2019-029

 

Spadaro D., Droby S. 2016. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology 47: 39–49. DOI: 10.1016/j.tifs.2015.11.003

 

Tomalak M. 2010. Rynek biologicznych środków ochrony roślin i przepisy legislacyjne. [The market of biological plant Protection products and legislative provisions]. Progress in Plant Protection/ Postępy w Ochronie Roślin 50 (3): 1052–1063.

 

Villalba M.L., Mazzucco M.B., Lopes C.A., Ganga M.A., Sangorrín M.P. 2020. Purification and characterization of Saccharomyces eubayanus killer toxin: Biocontrol effectiveness against wine spoilage yeasts. International Journal of Food Microbiology 331: 108714. DOI: 10.1016/j.ijfoodmicro.2020.108714

 

Villalba M.L., Susana Sáez J., Del Monaco S., Lopes C.A., Sangorrín M.P. 2016. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. International Journal of Food Microbiology 217: 94–100. DOI: 10.1016/j.ijfoodmicro.2015.10.006

 

Wang X.-X., Chi Z., Peng Y., Wang X.-H., Ru S.-G., Chi Z.-M. 2012. Purification, characterization and gene cloning of the killer toxin produced by the marine-derived yeast Williopsis saturnus WC91-2. Microbiological Research 167 (9): 558–563. DOI: 10.1016/j.micres.2011.12.001

 

Woźniak M., Ratajczak I., Kwaśniewska P., Cofta G., Hołderna-Kędzia E., Mazela M. 2015. Badanie aktywności ekstraktów propolisowych wobec wybranych gatunków grzybów pleśniowych. [The activity of propolis extracts against selected moulds]. Postępy Fitoterapii 4/2015: 205–209.

 

Zhang J., Khan S.A., Heckel D.G., Bock R. 2017. Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnology 35 (9): 871–882. DOI: 10.1016/j.tibtech.2017.04.009

 

Zhao Y., Tu K., Shao X.F., Jing W., Yang J.L., Su Z.P. 2008. Biological control of the post-harvest pathogens Alternaria solani, Rhizopus stolonifer, and Botrytis cinerea on tomato fruit by Pichia guilliermondii. The Journal of Horticultural Science and Biotechnology 83 (1): 132–136. DOI: 10.1080/14620316.2008.11512358

Progress in Plant Protection (2021) 61: 327-337
First published on-line: 2021-11-10 10:53:45
http://dx.doi.org/10.14199/ppp-2021-035
Full text (.PDF) BibTeX Mendeley Back to list