Progress in Plant Protection

Allexiviruses – pathogens of garlic plants
Allexiwirusy – patogeny czosnku pospolitego

Maria Bereda, e-mail: m_chodorska@o2.pl

Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Samodzielny Zakład Fitopatologii, Nowoursynowska 159, 02-776 Warszawa, Polska

Elżbieta Paduch-Cichal, e-mail: elzbieta_paduch_cichal@sggw.pl

Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Samodzielny Zakład Fitopatologii, Nowoursynowska 159, 02-776 Warszawa, Polska
Streszczenie

Garlic (Allium sativum L.) is one of the most important culinary herbs in Poland. Viral diseases are among the most serious threats to garlic cultivation. As garlic is vegetatively propagated, virus infections are transmitted from one crop cycle to another through infected cloves. The most commons viruses infecting garlic plants are members of three families: Potyviridae (genus Potyvirus), Betaflexiviridae (genus Carlavirus) and Alphaflexiviridae (genus Allexivirus). These viruses have similar morphological properties and often similar biology, thus it is very difficult to distinguish them. Eight virus species belong to the genus Allexivirus: Garlic mite-borne filamentous virus (GarMbFV), Garlic virus A (GarV-A), Garlic virus B (GarV-B), Garlic virus C (GarV-C), Garlic virus D (GarV-D), Garlic virus E (GarV-E), Garlic virus X (GarV-X) and Shallot virus X (ShVX). Infections of allexiviruses can cause severe losses in garlic production fields such as – decrease in bulbs’ weight (14–32%) and reduction of their diameter (6–11%). Phylogenetic analysis based on nucleotide, as well as amino acid sequences of different genome fragments, has revealed genetic diversity within populations of allexiviruses. Furthermore, the diagnostic methods used for detection of viruses that belong to the genus Allexivirus occurring in garlic plants are described.


Czosnek pospolity (Allium sativum L.) jest jedną z najważniejszych roślin przyprawowych uprawianych w Polsce. Ze względu na to, że jest to roślina rozmnażana jedynie w sposób wegetatywny, wirusy przenoszone są z jednego cyklu uprawy na kolejny wraz z zainfekowanymi cebulami. Czosnek jest porażany przede wszystkim przez wirusy należące do trzech rodzin: Potyviridae (rodzaj Potyvirus), Betaflexiviridae (rodzaj Carlavirus) i Alphaflexiviridae (rodzaj Allexivirus). Są to wirusy o zbliżonej morfologii oraz właściwościach biologicznych, dlatego istnieją trudności w rozdzieleniu kompleksu tych wirusów. Do rodzaju Allexivirus należy osiem gatunków wirusów: przenoszony przez szpeciele nitkowaty wirus czosnku (Garlic mite-borne filamentous virus, GarMbFV), wirus A czosnku (Garlic virus A, GarV-A), wirus B czosnku (Garlic virus B, GarV-B), wirus C czosnku (Garlic virus C, GarV-C), wirus D czosnku (Garlic virus D, GarV-D), wirus E czosnku (Garlic virus E, GarV-E), wirus X czosnku (Garlic virus X, GarV-X) i wirus X szalotki (Shallot virus X, ShVX). Obecność allexiwirusów w roślinach czosnku jest przyczyną spadku plonu – redukcja ciężaru cebul (14–32%) oraz ich średnicy (6–11%). Na podstawie wyników przeprowadzonych analiz filogenetycznych, opartych na budowie sekwencji nukleotydów i amino-kwasów różnych fragmentów genomu poszczególnych gatunków ustalono, że allexiwirusy są zróżnicowane genetycznie. Ponadto przedstawiono metody diagnostyczne wykorzystywane do wykrywania i identyfikacji allexiwirusów w roślinach czosnku pospolitego.


Słowa kluczowe
garlic; allexiviruses; genom; genetic diversity; diagnostic methods; czosnek; allexiwirusy; zróżnicowanie genetyczne; diagnostyka
Referencje

Adams M.J., Antoniw J.F., Bar-Joseph M., Brunt A.A., Candresse T., Foster G.D., Martelli G.P., Milne R.G., Fauquet C.M. 2004. The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Archives of Virology 149: 1045–1060.

Beck D.L., Guilford P.J., Voot D.M., Andersen M.T., Forster R.L.S. 1991. Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183: 695–702.

Bereda M. 2015. Charakterystyka allexiwirusów – patogenów roślin czosnku (Allium sativum L.). Praca doktorska. Samodzielny Zakład Fitopatologii. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, 227 ss.

Bos L. 1983. Viruses and virus diseases of Allium species. Acta Horticulturae 127: 11–29.

Cafrune E.E., Balzarini M., Conci V.C. 2006. Changes in the concentration of an Allexivirus during the crop cycle of two garlic cultivars. Plant Disease 90 (10): 1293–1296.

Chen J., Chen J. 2002. Genome organization and phylogenetic tree analysis of Garlic virus E, a new member of genus Allexivirus. Chinease Science Bulletin 47 (1): 33–37.

Chen J., Chen J.P., Adams M.J. 2001. Molecular characterisation of a complex mixture of viruses in garlic with mosaic symptoms in China. Archives of Virology 146: 1841–1853.

Chodorska M., Paduch-Cichal E., Kalinowska E., Szyndel M.S. 2014. Assessment of Allexiviruses infection in garlic plants in Poland. Acta Scientiarum Polonorum, Hortorum Cultus 13 (2): 176–186.

Conci V.C., Canavelli A.E., Balzarini M.G. 2010. The distribution of garlic viruses in leaves and bulbs during the first year of infection. Journal of Phytopathology 158: 186–193.

Conci V.C., Nome S.F., Milne R.G. 1992. Filamentous viruses of garlic in Argentina. Plant Disease 76: 594–596.

Diekmann M. 1997. FAO/IPGRI Technical guidelines for the safe movement of germplasm. Allium spp. Food and Agriculture Organization of the United Nations, Rome/International Plant Genetic Resources Institute, Rome, p. 18.

Dovas C.I., Hatziloukas E., Salomon R., Barg E., Shiboleth Y., Katis N.I. 2001. Incidence of viruses infecting Allium spp. in Greece. Phytopathology 149: 1–7.

Dovas C.I., Volvas C. 2003. Viruses infecting Allium spp. in southern Italy. Journal of Plant Pathology 85, p. 135.

Etoh T. 1985. Studies on the sterility in garlic Allium sativum L. Memoirs of Faculty of Agriculture Kagawa University 21: 7–132.

FAO 2011. FAO Statistical Yearbook 2010. Food and Agriculture Organization (FAO), Rome, Italy.

Fayad-André M.S., Dusi A.N., Resende R.O. 2011. Spread of viruses in garlic fields cultivated under different agricultural production systems in Brazil. Tropical Plant Pathology 36 (6): 341–349.

Fidan H., Çağlar B.K., Baloğlu S., Yılmaz M.A. 2015. Urginea maritime (L.) is a new host of Allexivirus group on onion and garlic plants in Turkey. Acta Horticulturae 1002: 309–312.

Forster R.L.S., Bevan M.W., Harbison S.A., Gardner R.C. 1988. The complete nucleotide sequence of the Potexvirus white clover mosaic virus. Nucleic Acids Research 16: 291–303.

Foster G.D. 1992. The structure and expression of the genome of carlaviruses. Research in Virology 143: 103–112.

Fujisawa J. 1989. Loss of garlic yield by double infection of garlic viruses. Agriculture & Horticulture 64: 737–741.

García-Arenal F., Fraile M., Malpica J.M. 2001. Variability and genetic structure of plant virus populations. Annual Review of Phytopathology 39: 157–186.

García-Arenal F., McDonald B.A. 2003. An analysis of the durability of resistance to plant viruses. Phytopathology 93: 941–952.

Gawande S.J., Gurav V.S., Ingle A.A., Gopal J. 2015. First report of Garlic virus A in garlic from India. Plant Disease 99 (9), p. 1288.

Gieck S.L., Hamm P.B., David N.L., Pappu H.R. 2009. First report of Garlic virus B and Garlic virus D in garlic in the Pacific Northwest. Plant Disease 93 (4), p. 431.

Helguera M., Bravo-Almonacid F., Kobayashi K., Rabinowicz P.D., Conci V., Mentaberry A. 1997. Immunological detection of a GarV-type virus in Argentine garlic cultivars. Plant Disease 81: 1005–1010.

Hillman B.I., Lawrence D.M. 1995. Carlaviruses. p. 35–50. In: “Pathogenesis and Host Specificity in Plant Diseases, Histopathological, Biochemical, Genetic and Molecular Bases. Vol III: Viruses and Viroids” (R.P. Singh, U.S. Singh, K. Kohmoto, eds). Pergamon Press, London.

Jelkmann W.E., Maiss E., Martin R.R. 1992. The nucleotide sequence and organization of strawberry mild edge-associated potexvirus. Journal of General Virology 73: 475–479.

Jemal K., Abraham A., Feyissa T. 2015. The occurrence and distribution of four viruses on garlic (Allium sativum L.) in Ethiopia. International Journal of Basic and Applied Sciences 4 (1): 5–11.

Kang S.G., Bong J.K., Eun T.L., Moo U.C. 2007. Allexivirus transmitted by eriophyoid mites in garlic plants. Journal of Microbiology and Biotechnology 17: 1833–1840.

Kanyuka K.V., Vishnichenko V.K., Levay K.E., Kondrikov D.Y., Ryabov E.V., Zavriev S.K. 1992. Nucleotide sequence of Shallot virus X RNA reveals a 5-proximal cistron closely related to those of potexviruses and a unique arrangement of the 3-proximal cistrons. Journal of General Virology 73: 2553–2560.

King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J. 2012. Virus taxonomy: classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, Amsterdam, 1327 pp.

Klukáčková J., Navrátil M., Duchoslav M. 2007. Natural infection of garlic (Allium sativum L.) by viruses in the Czech Republic. Journal of Plant Diseases Protection 114 (3): 97–100.

Koo B.J., Kang S.G., Chang M.U. 2002. Survey of garlic virus disease and phylogenetic characterization of garlic viruses of the genus Allexivirus isolated in Korea. Journal of Plant Pathology 18: 237–243.

Kryczyński S. 2010. Wirusologia roślinna. PWN, Warszawa, 375 ss.

Kumar S., Baranwal V.K., Joshi S., Arya M., Majumder S. 2010. Simultaneous detection of mixed infection of Onion yellow dwarf virus and an Allexivirus in RT-PCR for ensuring virus free onion bulbs. Indian Journal of Virology 21: 64–68.

Lanzoni C., Ratti C., Turina M., Pisi A., Tedeschi P., Autonell C.R. 2006. Molecular characterisation of Allexiviruses from garlic in Italy. Journal of Plant Pathology 88, p. 47.

Lee E.T., Koo B.J., Jung J.H., Chang M.U., Kang S.G. 2007. Detection of Allexiviruses in the garlic plants in Korea. Journal of Plant Pathology 23 (4): 266–271.

Lu Y.W., Chen J., Zheng H.Y., Adams M.J., Chen J.P. 2008. Serological relationships among the over-expressed coat proteins of Allexiviruses. Journal of Phytopathology 156: 251–255.

Majumder S., Baranwal V.K. 2014. Simultaneous detection of four garlic viruses by multiplex reverse transcription PCR and their distribution in Indian garlic accessions. Journal of Virology Methods 202: 34–38.

Majumder S., Baranwal V.K., Joshi S. 2008. Simultaneous detection of Onion yellow dwarf virus and Garlic latent virus in infected leaves and cloves of garlic by duplex RT-PCR. Journal of Plant Pathology 90: 369–372.

Mann L.K., Minges P.A. 1958. Growth and bulbing of garlic (Allium sativum L.) in response to storage temperature of planting day length and planting date. Hilgardia 27: 385–419.

Matoušek J., Schubert J., Dĕdic P. 2009. Complementation analysis of triple gene block of Potato virus S (PVS) revealed its capability to support systemic infection and aphid transmissibility of recombinant Potato virus X. Virus Research 146: 81–88.

Mavric I., Ravnikar M. 2005. A carlavirus serologically closely related to Carnation latent virus in Slovenian garlic. Acta Agriculturae of Slovenia 85: 343–349.

Melo-Filho P.A., Nagata T., Dusi A.N., Buso J.A., Torres A.C., Eiras M., Resende R.O. 2004. Detection of three Allexivirus species infecting garlic in Brazil. Pesquisa Agropecuária Brasileira 39 (8): 735–740.

Mituti T., Moura M.F., Marubayashi J.M., Oliveira M.L., Imaizumi V.M., Sakate R.K., Pavan M.A. 2015. Survey of viruses belonging to different genera and species in noble garlic in Brazil. Scientia Agricola 72 (3): 278–281.

Mohammed H.S., Zicca S., Manglli A., Mohamed M.E., El Siddig M.A.R., El Hussein A.A., Tomassoli L. 2013. Occurrence and phylo-genetic analysis of Potyviruses, Carlaviruses and Allexiviruses in garlic in Sudan. Journal of Phytopathology 161 (9): 642–650.

Oliveira M.L., De Marchi D.R., Mituti T., Pavan M.A., Krause-Sakate R. 2014. Identification and sequence analysis of five allexiviruses species infecting garlic crops in Brazil. Tropical Plant Pathology 39 (6): 483–489.

Park K.S., Bae Y.J., Jung E.J., Kang S.J. 2005. RT-PCR-based detection of six garlic viruses and their phylogenetic relationships. Journal of Microbiological Biotechnology 15: 1110–1114.

Parrano L., Afunian M., Pagliaccia D., Douhan G., Vidalakis G. 2012. Characterization of viruses associated with garlic plants pro-pagated from different reproductive tissues from Italy and other geographic regions. Phytopathologia Mediterranea 51 (3): 549–565.

Perotto M.C., Cafrune E.E., Conci V.C. 2010. The effect of additional viral infections on garlic plants initially infected with Allexiviruses. European Journal of Plant Pathology 126 (4): 489–495.

Petty I.T.D., Jackson A.O. 1990. Two forms of the major barley stripe mosaic virus nonstructural protein are synthesized in vivo from alternative initiation codons. Virology 177: 829–832.

Power A.G. 2000. Insect transmission of plant viruses: a constraint on virus variability. Current Opinion in Plant Biology 3: 336–340.

Razvjazkina G.M. 1971. Das Zwiebelmosaikvirus und seine Verbreitung im Freiland. Tagungs-Berichte der Deutschen Akademie der Landwirtschaftswissenschaften (Berlin) 115: 69–76.

Shahraeen N., Lesemann D.E., Ghotbi T. 2008. Survey for viruses infecting onion, garlic and leek crop in Iran. EPPO Bulletin 38 (1): 131–135.

Simon P.W., Jenderek M.M. 2003. Flowering, seed production and the genesis of garlic breeding. Plant Breeding Reviews 32: 211–244.

Singh P., Prabha K., Jain R.K., Baranwal V.K. 2014. N-terminal in coat protein of Garlic virus X is indispensible for its serological detection. Virus Genes 48 (1): 128–132.

Sumi S., Matsumi T., Tsuneyoshi T. 1999. Complete nucleotide sequences of Garlic viruses A and C, members of the newly ratified genus Allexivirus. Archives of Virology 144: 1819–1826.

Sumi S., Tsuneyoshi T., Furutani H. 1993. Novel rod-shaped viruses isolated from garlic, Allium sativum, possessing a unique genome organization. Journal of General Virology 74: 1879–1885.

Tabanelli D., Bertaccini A., Bellardi M.G. 2004. Molecular detection of filamentous viruses infecting garlic from different geographic origins. Journal of Plant Pathology 86 (4), p. 335.

Takaichi M., Yamamoto M., Nagakubo T., Oeda K. 1998. Four garlic viruses identified by reverse transcription-polymerase chain reaction and their regional distribution in northern Japan. Plant Disease 82: 694–698.

Tsuneyoshi T., Matsumi T., Natsuaki K.T., Sumi S. 1998. Nucleotide sequence analysis of virus isolates indicates the presence of three Potyvirus species in Allium plants. Archives of Virology 143: 97–113.

Van Dijk P. 1991. Mite-borne virus isolates from cultivated Allium species and their classification into two new rymoviruses in the family Potyviridae. Netherlands Journal of Plant Pathology 97: 381–399.

Van Dijk P. 1993. Survey and characterization of potyviruses and their strains in Allium species. Netherlands Journal of Plant Pathology 99: 1–48.

Van Dijk P., Van der Vlugt R.A.A. 1994. New mite-borne virus isolates from rakkyo, shallot and wild leek species. European Journal of Plant Pathology 100: 269–277.

Walkey D.G.A. 1990. Virus diseases. p. 191–212. In: “Onions and Allied Crops”, Vol. II (H.D. Rabinowitch, J.L. Brewster, eds.). CRC Press, Boca Raton, FL.

Walkey D.G.A., Antill D.N. 1989. Agronomic evaluation of virus-free and virus infected garlic (Allium sativum L.). Journal of Horticulturae Science 64: 53–60.

Ward L.I., Perez-Egusquiza Z., Fletcher J.D., Clover G.R.G. 2009. A survey of viral diseases of Allium crops in New Zealand. Australasian Plant Pathology 38: 533–539.

Wylie S.J., Li H., Jones M.G.K. 2012a. Phylogenetic analysis of allexiviruses identified on garlic from Australia. Australasian Plant Disease Notes 7: 23–27.

Wylie S.J., Li H., Saqib M., Jones M.G.K. 2014. The global trade in fresh produce and the vagility of plant viruses: a case study in garlic. PLoS ONE 9 (8): e105044.

Wylie S.J., Luo H., Li H., Jones M.G. 2012b. Multiple polyadenylated RNA viruses detected in pooled cultivated and wild plant samples. Archives of Virology 157 (2): 271–284.

Yamashita K., Sakai J., Hanada K. 1996. Characterization of a new virus from garlic (Allium sativum L.), garlic mite borne mosaic virus. Annals of the Phytopathological Society of Japan 62: 483–489.

Zavriev S.K., Kanyuka K.V., Levay K.E. 1991. The genome organization of Potato virus M RNA. Journal of General Virology 72: 9–14.

Zhou Z.Sh., Dell’Orco M., Saldarelli P., Turturo C., Minafra A., Martelli G.P. 2006. Identification of an RNA silencing suppressor in the genome of Grapevine virus A. Journal of General Virology 87: 2387–2395.

Zimmern D. 1987. Evolution of RNA viruses. p. 211–240. In: “RNA Genetics” (J. Holland, E.R. Domingo, P. Ahlquist, eds.). CRC Press, Boca Raton, FL, 365 pp.

Progress in Plant Protection (2016) 56: 302-311
Data pierwszej publikacji on-line: 2016-07-25 14:09:29
http://dx.doi.org/10.14199/ppp-2016-049
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy