Progress in Plant Protection

The effect of microencapsulated essential oils on the initial growth of maize (Zea mays) and common weeds (Echinochloa crus-galli and Chenopodium album)
Wpływ mikrokapsułkowanych olejków eterycznych na początkowy wzrost kukurydzy (Zea mays) i chwastów (Echinochloa crus-galli i Chenopodium album

Agnieszka Synowiec, e-mail: a.stoklosa@ur.krakow.pl

Uniwersytet Rolniczy im. Hugona Kołłątaja, Al. Mickiewicza 21, 31-120 Kraków, Polska

Aleksandra Smęda, e-mail: olasmeda@gmail.com

Uniwersytet Rolniczy im. Hugona Kołłątaja, Al. Mickiewicza 21, 31-120 Kraków, Polska

Janusz Adamiec, e-mail: janusz.adamiec@p.lodz.pl

Politechnika Łódzka, Wólczańska 171, 90-924 Łódź, Polska

Danuta Kalemba, e-mail: danuta.kalemba@p.lodz.pl

Politechnika Łódzka, Wólczańska 171, 90-924 Łódź, Polska
Streszczenie

The aim of the study was to determine the effect of soil-maltodextrin (MDX) and MDX microencapsulated essential oils (EOs, 12%) of peppermint (Mentha × piperita L.), caraway (Carum carvi L.) or calamus (Acorus calamus L.) at various doses (0.75, 1.5 and 3 g/pot), on the initial growth of maize (Zea mays L.), barnyard grass [Echinochloa crus-galli (L.) P. Beauv.] and lambsquarters (Chenopodium album L.). The results of a pot experiment showed the strongest inhibitory effect on the growth of the studied plants of MDX alone. Both the MDX and microencapsulated EOs decreased the relative chlorophyll content of the leaves in maize. Maize was the most tolerant to the microencapsulated EOs while lambsquarters was more sensitive to the microcapsules compared to barnyard grass. The highest doses of microencapsulated EOs, particularly those containing peppermint or caraway, caused the greatest decrease in the number and dry weight of the weeds. Based on the results, it can be concluded that the microencapsulated EOs pose a phytotoxic effect against weeds and should be studied further under field conditions.


Celem badań było określenie wpływu mikrokapsułkowanych w maltodekstrynie olejków eterycznych z mięty (Mentha × piperita L.), kminku (Carum carvi L.) i tataraku (Acorus calamus L.) oraz samej maltodekstryny na początkowy wzrost kukurydzy (Zea mays L.), chwastnicy jednostronnej [Echinochloa crus-galli (L.) P. Beauv.] i komosy białej (Chenopodium album L.). Preparaty dodawano w różnych dawkach do gleby. W efekcie doświadczenia wazonowego stwierdzono, że wszystkie preparaty wywoływały silny efekt hamujący początkowy wzrost badanych roślin, a najsilniej działała maltodekstyna bez dodatku olejków eterycznych. Kukurydza była najbardziej tolerancyjna, a komosa najbardziej wrażliwa na zastosowane preparaty. U kukurydzy maltodekstryna i mikrokapsułkowane olejki powodowały spadek względnej zawartości chlorofilu w liściach. Najwyższa dawka mikrokapsułkowanych olejków eterycznych, szczególnie z dodatkiem olejku z mięty lub kminku, powodowała największe ograniczenie liczby i suchej masy badanych chwastów. Podsumowując należy stwierdzić, że mikrokapsułkowane olejki eteryczne wpływają hamująco na początkowy wzrost chwastów i powinny być badane w warunkach polowych.


Słowa kluczowe
barnyard grass; lambsquarters; phytotoxicity; growth inhibition; essential oils; maltodextrin; chwastnica jednostronna; komosa biała; fitotoksyczność; zahamowanie wzrostu; olejki eteryczne; maltodekstryna
Referencje

Arana-Sanchez A., Estarron-Espinosa M., Obledo-Vazquez E.N., Padilla-Camberos E., Silva-Vazquez R., Lugo-Cervantes E. 2010. Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in b-cyclodextrin. Letters in Applied Microbiology 50 (6): 585–590.

Buttery B.R., Buzzell R.I. 1977. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Canadian Journal of Plant Science 57 (1): 1–5.

Cavalieri A., Caporali F. 2010. Effects of essential oils of cinnamon, lavender and peppermint on germination of Mediterranean weeds. Allelopathy Journal 25 (2): 441–452.

da Costa S.B., Duarte C., Bourbon A.I., Pinheiro A.C., Serra A.T., Moldão Martins M., Nunes Januário M.I., Vicente A.A., Delgadillo I., Duarte C., da Costa B.M.L. 2012. Effect of the matrix system in the delivery and in vitro bioactivity of microencapsulated oregano essential oil. Journal of Food Engineering 110 (2): 190–199.

Del Toro-Sanchez C.L., Ayala-Zavala J.F., Machi L., Santacruz H., Villegas-Ochoa M.A., Alvarez-Parrilla E., Gonzalez-Aguilar G.A. 2010. Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. Journal of Inclusion Phenomena and Macrocyclic Chemistry 67 (3–4): 431–441.

Gharsallaoui A., Roudaut G., Chambin O., Voilley A., Saurel R. 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40 (9): 1107–1121.

Hernández-Hernández E., Regalado-González C., Vázquez-Landaverde P., Guerrero-Legarreta I., García-Almendárez B.E. 2014. Microencapsulation, chemical characterization, and antimicrobial activity of Mexican (Lippia graveolens H.B.K.) and European (Origanum vulgare L.) oregano essential oils. The Scientific World Journal 641814: 1–13. DOI:10.1155/2014/641814.

Kalemba D., Marschall H., Bradesi P. 2001. Constituents of the essential oil of Solidago gigantea Ait. (giant goldenrod). Flavour and Fragrance Journal 16 (1): 19–26.

Katz F.R. 1986. Maltodextrins. Cereal Foods World 31: 866–867.

Nazarro F., Orlando P., Fratianni F., Coppola R. 2012. Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology 23 (2): 182–186.

Ré I.M. 1998. Microencapsulation by spray drying. Drying Technology 16 (6): 1195–1236.

Rolli E., Marieschi M., Maietti S., Sacchetti G., Bruni R. 2014. Comparative phytotoxicity of 25 essential oils on pre- and postemergence development of Solanum lycopersicum L.: A multivariate approach. Industrial Crops and Products 60: 280–290.

Růžek L., Růžková M., Koudela M., Bečková L., Bečka D., Kruliš Z., Šárka E., Voříšek K., Ledvina Š., Šalounová B., Venyercsanová J. 2015. Biodegradation of composites based on maltodextrin and wheat B-starch in compost. Horticultural Science 42: 209–214.

Scarfato P., Avallone E., De Feo V., Acierno D. 2007. Synthesis and characterization of polyurea microcapsules containing essential oils with antigerminative activity. Journal of Applied Polymer Science 105 (6): 3568–3577.

Soottitantawat A., Yoshii H., Furuta T., Ohkawara M., Linko P. 2003. Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. Journal of Food Science 68 (7): 2256–2262.

StatSoft, Inc. (2011). STATISTICA (data analysis software system), version 10. www.statsoft.com.

Synowiec A., Drozdek E. 2016. Physicochemical and herbicidal properties of emulsions of essential oils against Avena fatua L. and Chenopodium album L. Journal of Plant Diseases and Protection 123 (2): 65–74.

Synowiec A., Kalemba D., Drozdek E., Bocianowski J. 2016. Phytotoxic potential of essential oils from temperate climate plants against the germination of selected weeds and crops. Journal of Pest Science 1–13. DOI:10.1007/s10340-016-0759-2.

Terzi I. 2008. Allelopathic effects of juglone and decomposed walnut leaf juice on muskmelon and cucumber seed germination and seedling growth. African Journal of Biotechnology 7 (12): 1870–1874.

Varona S., Rojoa S.R., Martína Á., Coceroa M.J., Serrab A.T., Crespob T., Duarte C.M.M. 2013. Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Industrial Crops and Products 42: 243–250.

Progress in Plant Protection (2016) 56: 372-378
Data pierwszej publikacji on-line: 2016-09-29 14:26:02
http://dx.doi.org/10.14199/ppp-2016-060
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy