Progress in Plant Protection

Zachowanie pestycydów w wysokotemperaturowym procesie technologicznym wypieku chleba
The behaviour of pesticides in the high-temperature technological process of bread baking

Izabela Hrynko, e-mail: i.hrynko@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska

Magdalena Jankowska, e-mail: m.jankowska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska

Piotr Kaczyński, e-mail: p.kaczynski@iorpib.poznanl.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska

Bożena Łozowicka, e-mail: b.lozowicka@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska
Streszczenie

Celem pracy była ocena wpływu prowadzonego w wysokiej temperaturze procesu technologicznego wypieku chleba z mąki pszennej i żytniej na zachowanie powszechnie stosowanych w ochronie zbóż substancji czynnych środków ochrony roślin. Wyniki przeprowadzonych badań wskazują na obniżenie pod wpływem wysokiej temperatury stężeń 12 pestycydów, należących do 7 różnych grup chemicznych (strobiluryny, pyretroidy, triazole, neonikotynoidy, fosforoorganiczne, imidazole, benzimidazole). Stopień redukcji pestycydów był uzależniony od użytego gatunku zboża oraz składu ciasta chlebowego, w tym obecności mikroorganizmów w postaci drożdży. Prowadzony w wysokiej temperaturze proces spowodował zmniejszenie stężenia badanych pestycydów od 24% do 87%. Największą redukcję stężenia otrzymano dla imidachloprydu w chlebie żytnim (87% redukcji), a najniższą w przypadku prosulfokarbu w chlebie pszennym (24% redukcji). Związki z grupy benzimidazoli i tiokarbaminianów efektywniej zredukowano w chlebie żytnim, niż pszennym. Wartości PF mieściły się w zakresie od 0,13 (imidachlopryd/chleb żytni/zakwas) do 0,76 (prosulfokarb/chleb pszenny/zakwas_drożdże).

 

The aim of the study was to assess the influence of the high-temperature technological process of bread baking from wheat and rye flour on the behaviour of commonly used active plant protection products in protection of cereals. The results of research conducted indicate the reduction thein concentration of 12 pesticides of 7 different chemical groups (strobilurins, pyrethroids, triazoles, neonicotinoids, organophosphates, imidazoles, benzimidazoles) when exposed to high temperature. The level of pesticide reduction was depending on the cereal raw material and content of bread dough used, including the presence of micro-organisms as the yeasts. The process conducted under the high temperature, caused a reduction of the pesticides tested from 24% to 87%. The greatest reduction of concentration was received for imidacloprid in rye bread (87% of reduction), while the lowest result was achieved for prosulfocarb in wheat bread (24% of reduction). Processing factor (PF) values were within a range between 0.13 (imidacloprid/rye bread/sourdough) and 0.76 (prosulfocarb/wheat bread/sourdough_yeast).

Słowa kluczowe
zboża; pozostałości środków ochrony roślin; proces technologiczny; współczynnik przetwarzania; cereals; pesticide residues; technological process; processing factor
Referencje

Adebiyi F.M., Ore O.T., Ojile F.J. 2022. Evaluation of potentially toxic elements and bromate levels in bread commonly consumed in Nigeria for human health risk assessment. Journal of Trace Elements in Medicine and Biology 2 (4): 100016. DOI: 10.1016/j.jtemin.2022.100016

 

Azizi A., Homayouni A. 2009. Bacterial-degradation of pesticides residue in vegetables during fermentation. Asian Journal of Chemistry 21 (8): 6255–6264.

 

Bengston M., Connell M., Davies R.A.H., Desmarchelier J.M., Phillips M.P., Snelson J.T., Sticka R. 1980. Fenitothion plus (1R)-phenothrin, and pirimiphos-methyl plus carbaryl, as grain protectant combinations for wheat. Pesticide Science 11 (5): 471–482. DOI: 10.1002/ps.2780110505

 

Bou-Mitri C., Nivelle Mekanna A., Dagher S., Moukarzel S., Farhat A.G. 2022. Occurrence and exposure to glyphosate present in bread and flour products in Lebanon. Food Control 136 (3): 108894. DOI: 10.1016/j.foodcont.2022.108894

 

EFSA (European Food Safety Authority) Journal 2022. The 2020 European Union report on pesticide residues in food. EFSA Journal 20 (3): 7215. DOI: 10.2903/j.efsa.2022.7215

 

González-Rodríguez R.M., Rial-Otero R., Cancho-Grande B., Gonzalez-Barreiro C., Simal-Gándara J. 2011. A review on the fate of pesticides during the processes within the food-production chain. Critical Reviews in Food Science & Nutrition 51 (2): 99–114. DOI: 10.1080/10408390903432625

 

Hrynko I., Kaczyński P., Łozowicka B. 2021. A global study of pesticides in bees: QuEChERS as a sample preparation methodology for their analysis – Critical review and perspective. Science of the Total Environment 792: 148385. DOI: 10.1016/j.scitotenv.2021.148385

 

Hrynko I., Kaczyński P., Pietruszyńska M., Łozowicka B. 2023. The effect of food thermal processes on the residue concentration of systemic and non-systemic pesticides in apples. Food Control 143: 109267. DOI: 10.1016/j.foodcont.2022.109267

 

Jankowska M., Łozowicka B. 2021. Wpływ procesów technologicznych na poziomy stężeń naturalnych i syntetycznych substancji toksycznych występujących w roślinach rolniczych i ich produktach oraz metody oznaczania toksyn. [The influence of technological processing on the concentration levels of natural and synthetic toxic substances present in agricultural plants and their products and determination methods of toxins]. Progress in Plant Protection 61 (1): 40–52. DOI: 10.14199/ppp-2021-005

 

Jankowska M., Łozowicka B., Kaczyński P. 2019. Comprehensive toxicological study over 160 processing factors of pesticides in selected fruit and vegetables after water, mechanical and thermal processing treatments and their application to human health risk assessment. Science of the Total Environment 652: 1156–1167. DOI: 10.1016/j.scitotenv.2018.10.324

 

Kaczyński P., Łozowicka B. 2017. One-step QuEChERS-based approach to extraction and cleanup in multiresidue analysis of sulfonylurea herbicides in cereals by liquid chromatography–tandem mass spectrometry. Food Analytical Methods 10 (1): 147–160. DOI: 10.1007/s12161-016-0564-9

 

Kalantary R.R., Jaafarzadeh N., Kermani M., Arani M.H. 2022. Deltamethrin and malathion pesticide residues determination in the wheat and probabilistic health risk assessment by Monte Carlo simulation: a case study in Aran-Bidgol, Iran. International Journal of Environmental Analytical Chemistry. DOI: 10.1080/03067319.2022.2128795

 

Kapeleka J.A., Sauli E., Ndakidemi P.A. 2021. Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. International Journal of Environmental Health Research 31 (7): 805–822. DOI: 10.1080/09603123.2019.1690132

 

Liang Y., Duan J., Gao Q., Li Y., Zhang Z. 2022. Effect of Chinese steamed bun and bread processing on pesticide residues in wheat flour. Food Production, Processing and Nutrition 4: 12. DOI: 10.1186/s43014-022-00092-2

 

Łozowicka B., Kaczynski P., Paritova A.E., Kuzembekova G.B., Abzhalieva A.B., Sarsembayeva N.B., Alihan K. 2014. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food and Chemical Toxicology 64: 238–248. DOI: 10.1016/j.fct.2013.11.038

 

Łozowicka B., Wołejko E., Hrynko I. 2022. Chloropiryfos – występowanie i narażenie zdrowia ludzi. Medyczne i społeczne aspekty zdrowia człowieka. Wydawnictwo Naukowe TYGIEL Sp. z o.o. 176: 103–112. ISBN 978-83-67104-33-3.

 

Łozowicka B., Wołejko E., Kaczyński P., Konecki R., Iwaniuk P., Drągowski W., Łozowicki J., Tujtebajeva G., Wydro U., Jabłońska-Trypuć A. 2021. Effect of microorganism on behaviour of two commonly used herbicides in wheat/soil system. Applied Soil Ecology 162: 103879. DOI: 10.1016/j.apsoil.2020.103879

 

Nowacka A., Hołodyńska-Kulas A., Drożdżyński D., Perczak A. 2022. Sprawozdanie roczne_2021_zadanie 1.7, 283 ss. (materiał niepublikowany).

 

Nugmanov A., Beishova I., Kokanov S., Łozowicka B., Kaczyński P., Konecki R., Snarska K., Wołejko E., Sarsembayeva N., Abdigaliyeva T. 2018. Systems to reduce mycotoxin contamination of cereals in the agricultural region of Poland and Kazakhstan. Crop Protection 106: 64–71. DOI: 10.1016/j.cropro.2017.12.014

 

PPDB 2022. Pesticide Properties Database. University of Hertfordshire, Anglia. https://sitem.herts.ac.uk/aeru/ppdb/en/ [dostęp: 08.10.2022].

 

PRiF 2020. Expert Committee on Pesticide Residues in Food (PRiF) annual report. https://www.gov.uk/government/publications/expert-committee-on-pesticide-residues-in-food-prif-annual-report [dostęp 08.10.2022].

 

Rodehutscord M., Rückert C., Maurer H.P., Schenkel H., Schipprack W., Bach Knudsen K.E., Schollenberger M., Laux M., Eklund M., Siegert W., Mosenthin R. 2016. Variation in chemical composition and physical characteristics of cereal grains from different genotypes. Archives of Animal Nutrition 70 (2): 87–107. DOI: 10.1080/1745039X.2015.1133111

 

SANTE/11312/2021. European Commission Directorate General for Health and Food Safety. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed, 57 ss.

 

Sarmast E., Fallah A.A., Jafari T., Khaneghah A.M. 2021. Occurrence and fate of mycotoxins in cereals and cereal-based products: a narrative review of systematic reviews and meta-analyses studies. Current Opinion in Food Science 39: 68–75. DOI: 10.1016/j.cofs.2020.12.013

 

Scholz R., van Donkersgoed G., Herrmann M., Kittelmann A., von Schledorn M., Graven C., Mahieu K., van der Velde-Koerts T., Anagnostopoulos C., Bempelou E., Michalski B. 2018. Database of processing techniques and processing factors compatible with the EFSA food classification and description system FoodEx 2 Objective 3: European database of processing factors for pesticides in food. European Food Safety Authority (EFSA) Supporting Publication 15 (11). DOI: 10.2903/sp.efsa.2018.en-1510

 

Sharma J., Satya S., Kumar V., Kumar Tewary D. 2005. Dissipation of pesticides during bread-making. Chemical Health and Safety 12 (1): 17–22. DOI: 10.1016/j.chs.2004.08.003

 

Tago D., Andersson H., Treich N. 2014. Pesticides and health: a review of evidence on health effects, valuation of risks, and benefit-cost analysis. Advances in Health Economics and Health Services Research 24: 203–295. DOI: 10.1108/S0731-219920140000024006

 

Wołejko E., Łozowicka B., Kaczyński P., Konecki R., Grobela M. 2017. The influence of chemical protection on the content of heavy metals in wheat (Triticum aestivum L.) growing on the soil enriched with granular sludge. Environmental Monitoring and Assessment 189: 424. DOI: 10.1007/s10661-017-6143-8

 

Wołejko E., Łozowicka B., Jabłońska-Trypuć A., Pietruszyńska M., Wydro U. 2022. Chlorpyrifos occurrence and toxicological risk assessment: a review. International Journal of Environmental Research and Public Health 19 (19): 12209. DOI: 10.3390/ijerph191912209

 

Zhang J., Li M.-M., Zhang R., Jin N., Quan R., Chen D.-Y., Francis F., Wang F.-Z., Kong Zhang L., Chengxi Y., Guo Q., Zhang J., Ruiz-Menjivar J. 2018. The impact of agricultural chemical inputs on environment: Global evidence from informatics analysis and visualization. International Journal of Low-Carbon Technologies 13 (4): 338–352. DOI: 10.1093/ijlct/cty039

 

Zhou X.W., Liu H.F., Zhao X.H. 2015. The potencies of three microorganisms to dissipate four organophosphorus pesticides in three food materials during traditional fermentation. Journal of Food Science and Technology 52: 7353–7360. DOI: 10.1007/s13197-015-1848-6

Progress in Plant Protection (2022) 62: 233-242
Data pierwszej publikacji on-line: 2022-12-08 10:04:16
http://dx.doi.org/10.14199/ppp-2022-026
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy