Progress in Plant Protection

Możliwości wykorzystania nanotechnologii dla poprawy jakości kiełków z nasion rzepaku jarego w kontekście wymogów integrowanej produkcji
Possibilities of using nanotechnology to improve spring rapeseed germ quality in the context of integrated production requirements

Magdalena Kachel, e-mail: magdalena.kachel@up.lublin.pl

Uniwersytet Przyrodniczy w Lublinie, Katedra Eksploatacji Maszyn i Zarządzania Procesami Produkcyjnymi, Głęboka 28, 20-612 Lublin, Polska

Anna Tratwal, e-mail: a.tratwal@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

Zrównoważona polityka rolnictwa skłania się do zastosowania nanokoloidów srebra i miedzi (AgNK, CuNK), które są najczęściej stosowanymi związkami spośród nanomateriałów w różnych dziedzinach, zwłaszcza w sektorze rolniczym. Rośliny są podstawowym składnikiem ekosystemu i najważniejszym źródłem pożywienia dla ludzkości, dlatego ważne jest zrozumienie wpływu nanokoloidów srebra i miedzi na wzrost i rozwój roślin. Niniejszy artykuł przedstawia wpływ powyższych nanokoloidów na rośliny, pod kątem zawartości pierwiastków zawartych w produkcie spożywczym w postaci suszonych kiełków nasion rzepaku pozyskanych z uprawy polowej z zastosowaniem opryskiwania dolistnego zawierającego nanokoloidy metali srebra i miedzi.

 

Sustainable agricultural policies are leaning towards the use of silver and copper nanocolloids (AgNK, CuNK), which are the most widely used compounds among nanomaterials in various fields, especially in the agricultural sector. Plants are an essential component of the ecosystem and the most important source of food for humanity, therefore, it is important to understand the effects of nanocolloids silver and copper on plant growth and development. This article presents the effects of the above nanocolloids on plants, in terms of the elemental content of a food product in the form of dried rapeseed sprouts obtained from a field crop with a foliar spray containing silver and copper metal nanocolloids.

Key words
nasiona rzepaku; nawożenie; nanokoloid srebra nanokoloid miedzi; makro- i mikroelementy; rapeseeds; fertilisation; silver nanocolloid; copper nanocolloid; macro- and micronutrients
References

Adrees M., Ali S., Rizwan M., Ibrahim M., Abbas F., Farid M., Zia-Ur-Rehman M., Irshad M.K., Bharwana S.A. 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research 22 (11): 8148–8162. DOI: 10.1007/s11356-015-4496-5

 

Alavi S., Dehpour A. 2010. Evaluation of the nanosilver colloidal solution in comparison with the registered fungicide to control greenhouse cucumber downy mildew disease in the north of Iran. Proceedings of the VI International Postharvest Symposium, Antalya, Turkey, 11 November 2010: 1643–1646.

 

Barrena R., Casals E., Colon J., Font X., Sanchez A., Puntes V. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75 (7): 850–857. DOI: 10.1016/j.chemosphere.2009.01.078

 

Bhardwaj D., Tomar R.J. 2011. Use of surface modified inorganic nano materials as slow release nitrogen fertilizer. s. 171–184. W: Sustainable Agricultural Development (M. Behnassi, S.A. Shahid, J. D’Silva, red.). Springer + Science Business Media, London, UK, 315 ss. ISBN 978-9400705180.

 

Carroll K.J., Reveles J.U., Shultz M.D., Khanna S.N., Carpenter E.E. 2011. Preparation of elemental Cu and Ni nanoparticles by the polyol method: an experimental and theoretical approach. The Journal of Physical Chemistry C 115 (6): 2656–2664. DOI: 10.1021/jp1104196

 

Chatterjee A.K., Chakraborty R., Basu T. 2014. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25 (13): 135101. DOI: 10.1088/0957-4484/25/13/135101

 

Chhipa H. 2017. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15 (1): 15−22. DOI: 10.1007/s10311-016-0600-4

 

Dimkpa C.O., McLean J.E., Britt D.W., Anderson A.J. 2015. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24 (1): 119–129. DOI: 10.1007/s10646-014-1364-x

 

Fernandes J.C., Henriques F.S. 1991. Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review 57: 246−273. DOI: 10.1007/BF02858564

 

Ghidan A.Y., Al Antary T.M. 2019. Applications of Nanotechnology in Agriculture. ISBN 978-1-78985-978-2. DOI: 10.5772/intechopen.88390

 

Ghormade V., Deshpande M.V., Paknikar K.M. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances 29 (6): 792–803. DOI: 10.1016/j.biotechadv.2011.06.007

 

GUS 2013. Nanotechnologia w Polsce w 2012 r. Główny Urząd Statystyczny, Warszawa, 8 ss.

 

Hasan S. 2015. A review on nanoparticles: their synthesis and types. Research Journal of Recent Sciences 4: 9–11.

 

Hatami M., Ghorbanpour M. 2013. Effect of nanosilver on physiological performance of Pelargonium plants exposed to dark storage. Journal of Horticultural Research 21 (1): 15–20. DOI: 10.2478/johr-2013-0003

 

Hong J., Rico C.M., Zhao L., Adeleye A.S., Keller A.A., Peralta-Videa J.R., Gardea-Torresdey J.L. 2015. Toxic effects of copperbased nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Science Process Impacts 17 (1): 177–185. DOI: 10.1039/c4em00551a

 

Kachel M. 2018. Wpływ nanokoloidów metali na wybrane parametry jakości nasion, roślin i oleju z rzepaku jarego. Rozprawa habilitacyjna. Komitet Inżynierii Rolniczej, Polskie Towarzystwo Inżynierii Rolniczej, Kraków, 145 ss. ISBN 978-83-64377-22-8.

 

Kaveh R., Li Y.S., Ranjbar S., Tehrani R., Brueck C.L., Van Aken B. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology 47 (18): 10637–10644. DOI: 10.1021/es402209w

 

Khiew P., Chiu W., Tan T., Radiman S., Abd-Shukor R., Chia C.H. 2011. Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material. s. 189–219. W: Palm Oil: Nutrition, Uses and Impacts (M.L. Palmetti, red.). Nova Science Publishers Inc, 321 ss. ISBN 978-1612099217.

 

Klaine S.J., Alvarez P.J.J., Batley G.E., Fernandes T.F., Handy R.D., Lyon D.Y., Mahendra S., McLaughlin M.J., Lead J.R. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27 (9): 1825–1851. DOI: 10.1897/08-090.1

 

Lewicki P.P. 2010. Kiełki nasion jako źródło cennych składników odżywczych. [Sprouts as source of valuable nutritients]. Żywność. Nauka. Technologia. Jakość 6 (73): 18–33.

 

Lin D., Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution 150 (2): 243−250. DOI: 10.1016/j.envpol.2007.01.016

 

Lombi E., Nowack B., Baun A., McGrath S.P. 2012. Evidence for effects of manufactured nanomaterials on crops is inconclusive. Proceedings of the National Academy of Sciences of the United States of America 109 (49): E3336. DOI: 10.1073/pnas.1214934109

 

Maksymiec W. 1997. Effect of copper on cellular processes in higher plants. Photosynthetica 33 (13): 321−342. DOI: 10.1023/A:1006818815528

 

McGeer J.C., Playle R.C., Wood C.M., Galvez F. 2000. A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwaters. Environmental Science and Technology 34 (19): 4199–4207. DOI: 10.1021/es9912168

 

Monica R.C., Cremonini R. 2009. Nanoparticles and higher plants. Caryologia 62 (2): 161−165. DOI: 10.1080/00087114.2004.10589681

 

Musante C., White J.C. 2010. Toxicity of silver and copper to Cucurbita pepo, differential effects of nano and bulk-size particles. Environmental Toxicology 27 (9): 510–517. DOI: 10.1002/tox.20667

 

Musee N., Thwala M., Nota N. 2011. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. Journal of Environmental Monitoring 13 (5): 1164–1183. DOI: 10.1039/C1EM10023H

 

Oliveira S.M., Brandão T.R.S., Silva C.L.M. 2016. Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: a review. Food Engineering Reviews 8 (2): 134–163. DOI: 10.1007/s12393-015-9124-0

 

Phu D.V., Lang V.T.K., Lan N.T.K., Duy N.N., Chau N.D., Du B.D., Cam B.D., Hien N.Q. 2010. Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by γ-irradiation. Journal of Experimental Nanoscience 5 (2): 169−179. DOI: 10.1080/17458080903383324

 

Rudy S. 2009. Energy consumption in the freeze - and convection-drying of garlic. [Energochłonność sublimacyjnego i konwekcyjnego suszenia czosnku]. Teka Komisji Motoryzacji i Energetyki Rolnictwa/Teka Commission of Motorization and Power Industry in Agriculture 9: 259–266.

 

Seif Sahandi M., Sorooshzadeh A., Rezazadeh H.S., Naghdibadi H.A. 2011. Effect of nano silver and silver nitrate on seed yield of borage. Journal of Medicinal Plants Research 5 (5): 706–710.

 

Shelar G.B., Chavan A.M. 2015. Myco-synthesis of silver nanoparticles from Trichoderma harzianum and its impact on germination status of oil seed. Biolife 3 (1): 109–113. DOI: 10.17812/blj314

 

Steinitz B., Bilavendran A.D. 2011. Thiosulfate stimulates growth and alleviates silver and copper toxicity in tomato root cultures. Plant Cell, Tissue and Organ Culture 107 (2): 355–363. DOI: 10.1007/s11240-011-9987-6

 

The Royal Society and The Royal Academy of Engineering 2004. Nanoscience and nanotechnologie: opportunities and uncertainties. London, UK, 116 ss. ISBN 0-85403-604-0.

 

Trujillo-Reyes J., Majumdar S., Botez C.E., Peralta-Videa J.R., Gardea-Torresdey J.L. 2014. Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? Journal Hazard Materials 267: 255–263. DOI: 10.1016/j.jhazmat.2013.11.067

 

Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8 (7): e68752. DOI: 10.1371/journal.pone.0068752

 

Vinković T., Novák O., Strnad M., Goessler W., Jurašin D.D., Parađiković N., Vrček I.V. 2017. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environmental Research 156: 10–18. DOI: 10.1016/j.envres.2017.03.015

 

Wood C.M., Hogstrand C., Galvez F., Munger R.S. 1996. The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquatic Toxicology 35 (2): 93–109. DOI: 10.1016/0166-445-X(96)00003-3

 

Zheng L., Hong F., Lu S., Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. BiologicalTrace Element Research 104 (1): 83–92. DOI: 10.1385/BTER:104:1:083

Progress in Plant Protection (2022) 62: 224-232
First published on-line: 2022-12-05 08:45:49
http://dx.doi.org/10.14199/ppp-2022-025
Full text (.PDF) BibTeX Mendeley Back to list