Progress in Plant Protection

Stilbenes and their role in disease resistance
Stilbeny i ich znaczenie w odporności roślin 

Monika Kozłowska, e-mail:

Uniwersytet Przyrodniczy w Poznaniu, Katedra Fizjologii Roślin, Wołyńska 35, 60-637 Poznań, Polska

Łukasz Czekała, e-mail:

Uniwersytet Przyrodniczy w Poznaniu, Katedra Fizjologii Roślin, Wołyńska 35, 60-637 Poznań, Polska

Phenylpropanoid pathway allows plants to withstand different stress conditions; biotic and abiotic. Some plants are able to synthesize stilbene derivatives based on a 1,2-diphenylethylene backbone. Stilbene synthase (STS) is an enzyme responsible for stilbene accumulation and it is generally believed that it evolved several times from chalcone synthase (CHS) during the evolution. However, STS unlike the commonly occurring CHS, is plant specific and occurs in approximately 70 unrelated plant species. Stilbenes have a range of functions, which mainly include strong antimicrobial properties, and thus are considered as phytoalexins. These compounds may also be involved in plant-herbivore relationships and allelopathy, and their antioxidant activities were evaluated. Stilbenes are still produced in small quantities, but the increase in their synthesis occurs due to infection, and moreover after injury, UV radiation and ozone. More effective elicitors are tested in vitro. The most widely reported plant stilbene is resveratro (3,5,4'-trihydroxy-trans-stilbene).

Powszechnym zjawiskiem w warunkach stresu biotycznego i abiotycznego jest aktywacja szlaku fenylopropanoidowego. Metabolitami tego szlaku są między innymi stilbeny, związki o szkielecie 1,2-difenyloetylenowym. Tylko niektóre, niespokrewnione gatunki roślin, są zdolne do syntezy i gromadzenia stilbenów. Enzymem umożliwiającym syntezę jest syntaza stilbenowa (STS – stilbene synthase), która na drodze ewolucji mogła ewaluować z syntazy chalkonowej (CHS – chalcone synthase), powszechnego enzymu w świecie roślin. Stilbeny spełniają w roślinach szereg funkcji, z których najistotniejsza wynika z silnych właściwości antymikrobowych, stąd zaliczane są do fitoaleksyn. Znane jest też ich działanie odstraszające względem roślinożerców oraz właściwości allelopatyczne i antyoksydacyjne. Stilbeny są wytwarzane w niewielkich ilościach, jednak aktywacja biosyntezy następuje przede wszystkim poinfekcyjnie, a ponadto pod wpływem zranienia, promieniowania UV, ozonu i jonów glinu. W warunkach in vitro poszukiwane są jeszcze skuteczniejsze induktory. Do najszerzej opisywanych stilbenów należy resweratrol (3,5,4'-trihydroksy-trans-stilben).

Słowa kluczowe
stilbenes; disease resistance; resveratrol; stilbene synthase (STS); stilbeny; odporność roślin; resweratrol; syntaza stilbenowa (STS)

Adrian M., Jeandet P., Bessis R., Joubert J.M. 1996. Induction of phytoalexins (resveratrol) synthesis in grapevine leaves treated with aluminium chloride (AlCl3). Journal of Agricultural and Food Chemistry 44 (8): 1979–1981.


Ahuja I., Kissen R., Bones A.M. 2012. Phytoalexins in defense against pathogens. Trends in Plant Science 17 (2): 73–90.


Albert S., Horbach R., Deising H.B., Siewert B., Csuk R. 2011. Synthesis and antimicrobial activity of (E) stilbene derivatives. Bioorganic and Medical Chemistry 19 (17): 5155–5166.


Becker J.V.W., Armstrong G.O., Van der Merwe M.J., Lambrechts M.G., Vivier M.A., Pretorius I.S. 2003. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Research 4 (1): 79–85.


Beekwilder J., Wolswinkel R., Jonker H., Hall R., De Rievos C.H., Bovy A. 2006. Production of resveratrol in recombinant microorganisms. Applied and Environmental Microbiology 72 (8): 5670–5672.


Bezier A., Lambert B., Baillieul F. 2002. Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. European Journal of Plant Pathology 108 (2): 111–120.


Bru M.R., Selles S., Casado-Vela J., Belchi-Navarro S., Pedreno M.A. 2006. Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. Journal of Agricultural and Food Chemistry 54 (1): 65–71.


Busch F., Mobasheri A., Shayan P., Lueders C., Stahlmann R., Shakibaei M. 2012. Resveratrol modulates interleukin-1β-induced phosphatidylinositol 3-kinase and nuclear factor κB signaling pathways in human tenocytes. The Journal of Biological Chemistry 287 (45): 38050–38063.


Chiron H., Drouet A., Lieutier F., Payer H.D., Ernst D., Sandermann H. 2000. Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding and fungal infection. Plant Physiology 124 (2): 865–872.


Chong J., Poutaraud A., Hugueney P. 2009. Metabolism and roles of stilbenes in plants. Plant Science 177 (3): 143–155.


Das S., Vasanthi H.R., Das D.K. 2010. Resveratrol: biochemistry and function. p. 229–330. In: “Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology” (C.G. Fraga, ed.). John Wiley & Sons, INC Publication, 565 pp.


Delaunois B., Cordelier S., Conreux A., Clements C. 2009. Molecular engineering of resveratrol in plants. Plant Biotechnology Journal 7 (1): 2–12.


D́ Introno A., Paradiso A., Scoditti E., D́ Amico L., De Paolis A., Carluccio M.A., Nicoletti I., Degara L., Santino A., Giovinazzo G. 2009. Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnology Journal 7 (5): 422–429.


Dixon R.A., Paiva N.L. 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell 7 (7): 1085–1097.


Donnez D., Jeandet P., Clemènt C., Courot E. 2009. Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends in Biotechnology 27 (12): 706–713.


Emiliani G., Fondi M., Fani R., Gribaldo S. 2009. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biology Direct 4: 7.


Fiorentino A., D́ Abrosca B., Pacifico S., Izzo A., Letizia M., Esposito A., Monaco P. 2008. Potential allelopatic effects of stilbenoids and flavonoids from leaves of Carex distachya Desf. Biochemical Systematics and Ecology 36 (9): 691–698.


Fornara V., Onelli E., Sparvoli F., Rossoni M., Aina R., Marino G., Citterio S. 2008. Localization of stilbene synthase in Vitis vinifera L. during berry development. Protoplasmata 233 (1): 83–93.


Gachon C.M., Langlois-Meurinne M., Saindrenan P. 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends in Plant Science 10 (11): 542–549.


Grønbæk M., Becker U., Johansen D., Gottschau A., Schnohr P., Olehein H., Jensen G., Sørensen T.I.A. 2000. Type of alcohol consumed and mortality from all causes, coronary heart disease and cancer. Annals of Internal Medicine 133 (6): 411–419.


Hain R., Bieseler B., Kindl H., Schröder G., Stöcker R. 1990. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Molecular Biology 15 (2): 325–335.


Harborne J.B. 1999. The comparative biochemistry of phytoalexins induction in plants. Biochemical Systematics and Ecology 27: 335–367.


Jeandet P., Douillet-Breuil A.C., Bessis R., Debord S., Sbaghi M., Adrian M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural Food Chemistry 50 (10): 2731–2741.


Katsuyama Y., Funa N., Miyahisa I., Horinouchi S. 2007. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chemistry and Biology 14 (6): 613–621.


Kingston D.G. 2009. Tubulin-interactive natural products as anticancer agents. Journal of Natural Products 72 (3): 507–515.


Langcake P. 1981. Disease resistance of Vitis spp. and the production of stress metabolites resveratrol, ε-viniferin, α-viniferin and pterostilbene. Physiological Plant Patholology 18 (2): 213–226.


Langcake P., Pryce R.J. 1977. A new class of phytoalexins from grapevines. Experientia 33 (2): 151–152.


Lanz T., Tropf S., Marner F.J., Schröder J., Schröder G. 1991. The role of cysteines in polyketide synthases. Site-directed mutagenesis of resveratrol and chalcone synthases, 2 key enzymes in different plant-specific pathways. The Journal of Biological Chemistry 266 (15): 9971–9976.


Li Y., Huang F., Lu Y., Shi Y., Zhang M., Fan J., Wang W. 2013. Mechanism of plant–microbe interaction and its utilization in disease-resistance breeding for modern agriculture. Physiological and Molecular Plant Pathology 83: 51–58.


Mikulski D., Górniak R., Molski M. 2010. A theoretical study of the structure – radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment. European Journal of Medicinal Chemistry 45 (3): 1015–1027.


Morales M., Bru R., Garcia-Carmona F., Ros Barcelo A., Pedreno M.A. 1998. Effect of dimethyl-β-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with Xylophilus ampelinus. Plant Cell Tissue Organ Culture 53 (3): 179–187.


Morales M., Ros Barcelo A., Pedreno M.A. 2000. Plant stilbenes: recent advances in their chemistry and biology. Advances in Plant Physiology 3: 39–70.


Ndiaye M., Philippe C., Mukhtar H., Ahmad N. 2011. The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Archives of Biochemistry and Biophysics 508 (2): 164–170.


Noel J.P., Dixon R.A., Pichersky E., Zubieta C., Ferrer J.L. 2003. Structural, functional, and evolutionary basis for methylation of plant small molecules. Recent Advances in Phytochemistry 37: 37–58.


Pezet R., Gindro K., Viret O., Richter H. 2004. Effect of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis – Journal of Grapevine Research 43 (3): 145–148.


Pezzuto J.M. 2008. Resveratrol as an inhibitor of carcinogenesis. Pharmaceutical Biology 46 (7–8): 443–573.


Pietrowska-Borek M., Czekała Ł., Belchi-Navarro S., Pedreno M.A., Guranowski A. 2014. Diadenosine triphosphate is a novel factor which in combination with cyclodextrins synergistically enhances the biosynthesis of resveratrol in Vitis vinifera cv. Monastrell suspension cultured cells. Plant Physiology and Biochemistry 84: 271–276.


Privat C., Telo J.P., Bernardes-Genisson V., Vieira A., Souchard J.P., Nepveu F. 2002. Antioxidant properties of trans-epsilon-viniferin as compared to stilbene derivatives in aqueous and non-aqueous media. Journal of Agricultural Food Chemistry 50: 1213–1217.


Quincozes-Santos A., Gottfried C. 2012. Resveratrol modulates astroglial functions: neuroprotective hypothesis. Annals of the New York Academy of Science 1215: 72–78.


Riviere C., Pawlus A.D., Merillon J.M. 2012. Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Natural Product Report 29: 1317–1333.


Rook F. 2016. Metabolic engineering of chemical defense pathways in plant disease control. p. 71–90. In: “Plant Pathogen Resistance Biotechnology” (D.B. Collinge, ed.). John Wiley & Sons, Inc. Haboken, New Jersey, 405 pp.


Rosemann D., Heller W., Sandermann H. 1991. Biochemical plant responses to ozone: II induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiology 97 (4): 1280–1286.


Roupe K.A., Remsberg C.M., Yanes J.A., Davies N.M. 2006. Pharmacometrics of stilbenes: seguing towards the clinic. Current Clinical Pharmacology 1: 81–101.


Schnee S., Viret O., Gindro K. 2008. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiological and Molecular Plant Pathology 72: 128–133.


Schultz T.P., Hubbard T.F., Jin L., Fisher T.H., Nicholaus D.D. 1990. Role of stilbenes in the natural durability of wood: fungicidal structure activity relationships. Phytochemistry 29 (5): 1501–1507.


Schulze K., Schreiber L., Szankowski I. 2005. Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. Journal of Agricultural Food Chemistry 53: 356–362.


Soleas G.J., Diamandis E.P., Goldberg D.M. 1997. Wine as a biological fluid: history, production, and role in disease prevention. Journal of Clinical Laboratory 11: 287–313.


Solecka D. 1997. Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiologia Plantarum 19 (3): 257–268.


Stivala L.A., Savio M., Carafoli F., Perucca P., Bianchi L., Maga G., Forti L., Pagnoni U.M., Albini A., Prosperi E., Vannini V. 2001. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. The Journal of Biological Chemistry 276: 22586–22594.


Suga T., Ohta S., Munesada K., Ide N., Kurokawa M., Shimizu M., Ohta E. 1993. Endogenous pine wood nematicidal substances in pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry 33 (6): 1395–1401.


Takaoka M.J. 1940. Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. Fil.). HUSCAP – Journal of the Faculty of Science, Hokkaido University 3: 1–16.


Torres P., Avila J.G., Romo De Vivar A., Garcia A.M., Marin J.C., Aranda E., Cespedes C.L. 2003. Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 64 (2): 463–473.


Tropf S., Lanz T., Rensing S.A., Schröder J., Schröder G. 1994. Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. Journal of Molecular Evolution 38 (6): 610–618.


Wang W., Tang K., Yang H.R., Wen P.F., Zhang P., Wang H.L., Huang W.D. 2010. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiology and Biochemistry 48 (2–3): 142–152.


Wu J.M., Wang Z.R., Hsieh T.C., Bruder J.L., Zou J.G., Huang Y.Z. 2001. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine. International Journal of Molecular Medicine 8 (1): 3–17.


Yamaguchi T., Kurosaki F., Suh D.Y., Sankawa U., Nishioka M., Akiyama T., Shibuya M., Ebizuka Y. 1999. Cross-reaction of chalcone synthase and stilbene synthase overexpressed in Escherichia coli. FEBS Letters 460 (3): 457–461.

Progress in Plant Protection (2017) 57: 27-35
Data pierwszej publikacji on-line: 2017-02-16 08:13:09
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy