Progress in Plant Protection

Ganoderma lucidum i Pleurotus ostreatus w testach na antagonistyczne oddziaływanie wobec patogenicznych grzybów i bakterii dla roślin pomidora
Ganoderma lucidum and Pleurotus ostreatus in tests for antagonistic effects against fungal and bacterial pathogens for tomato plants

Weronika Zenelt, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Katarzyna Sadowska, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Sylwia Stępniewska-Jarosz, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Natalia Łukaszewska-Skrzypniak, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Natasza Borodynko-Filas, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Grzyby wielkoowocnikowe, takie jak Ganoderma lucidum i Pleurotus ostreatus, znane są z właściwości prozdrowotnych i wartości kuli­narnej. Badano ich zdolność do hamowania wzrostu patogenicznych grzybów i bakterii roślin pomidora. Ganoderma lucidum i P. ostre­atus efektywnie hamowały wzrost Alternaria solani i Botrytis cinerea. Obserwowano również ograniczone hamowanie wzrostu bakterii, z największym efektem dla Clavibacter michiganensis subsp. michiganensis pod wpływem G. lucidum oraz dla Pseudomonas syringae pod wpływem P. ostreatus. To pierwsze doniesienie o antagonistycznym działaniu P. ostreatus na patogeny bakteryjne roślin pomidora. Przeprowadzone badania mogą przyczynić się do opracowania ekologicznych strategii kontroli zakażeń roślin pomidora, minimalizując ich negatywne skutki dla środowiska i zdrowia ludzkiego.


Large fruiting body fungi, such as Ganoderma lucidum and Pleurotus ostreatus, are known for their health benefits and culinary value. Their ability to inhibit the growth of pathogenic fungi and bacteria in tomato plants has been investigated. Both G. lucidum and P. ostrea­tus effectively inhibited the growth of Alternaria solani and Botrytis cinerea. Limited inhibition of bacterial growth was also observed, with the greatest effect on Clavibacter michiganensis subsp. michiganensis under the influence of G. lucidum and on Pseudomonas syringae under P. ostreatus. This is the first report of P. ostreatus antagonistic action against bacterial pathogens of tomato plants. Our research may contribute develop to ecological strategies for controlling tomato plant infections, minimizing their negative environmental and human health effects.

Słowa kluczowe
grzyby patogeniczne; bakterie patogeniczne; choroby pomidora; działanie antybakteryjne; kontrola biologiczna; grzyby wielkoowocnikowe; phytopathogenic fungi; phytopathogenic bacteria; tomato diseases; antimicrobial activity; biological control; macrofungi

Al-Bahrani R., Raman J., Lakshmanan H., Hassan A.A., Sabaratnam V. 2017. Green synthesis of silver nanoparticles using tree oys­ter mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Materials Letters 186 (1): 21–25. DOI: 10.1016/j.matlet.2016.09.069


Asif M., Shahid A., Ahmad N. 2022. Ganoderma lucidum as a biocontrol agent for management of Alternaria solani, a pathogen of early blight of tomato. Sarhad Journal of Agriculture 38 (2): 734–741. DOI: 10.17582/journal.sja/2022/38.2.734.741


Atri N., Sharma S.K., Joshi R., Gulati A., Gulati A. 2013. Nutritional and neutraceutical composition of five wild culinary-medicinal spe­cies of genus Pleurotus (higher Basidiomycetes) from northwest India. International Journal of Medicinal Mushrooms 15 (1): 49–56. DOI: 10.1615/intjmedmushr.v15.i1.60


Attia M.S., El-Sayyad G.S., Abd Elkodous M., El-Batal A.I. 2020. The effective antagonistic potential of plant growth-promoting rhizo­bacteria against Alternaria solani-causing early blight disease in tomato plant. Scientia Horticulturae 266: 109289. DOI: 10.1016/j. scienta.2020.109289


Baig M.N., Shahid A.A., Ali M. 2015. In vitro assessment of extracts of the lingzhi or reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) against different plant pathogenic fungi. International Journal of Medicinal Mushrooms 17 (4): 407–411. DOI: 10.1615/intjmedmushrooms.v17.i4.90


Bari E., Daniel G., Yilgor N. 2020. Comparison of the decay behavior of two white-rot fungi in relation to wood type and exposure condi­tions. Microorganisms 8 (12): 1931. DOI: 10.3390/microorganisms8121931


Bari E., Oladi M.K.R., Ghanbary M.A.T., Daryaei M.G., Benz O.S.J.P. 2017. A comparison between decay patterns of the white-rot fungus Pleurotus ostreatus in chestnut – leaved oak (Quercus castaneifolia) shows predominantly simultaneous attack both in vivo and in vitro. Forest Pathology 47 (4): e12338. DOI: 10.1111/efp.12338


Bertini L., Amicucci A., Agostini D. 1999. A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiology Letters 173 (1): 239–245. DOI: 10.1111/j.1574-6968.1999.tb13508.x


Bhardwaj K., Sharma A., Tejwan N. 2020. Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: a review. Journal of Fungi 6 (4): 351. DOI: 10.3390/jof6040351


Buell C.R., Joardar V., Lindeberg M. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syrin­gae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America 100 (18): 10181–10186. DOI: 10.1073/pnas.1731982100


Chaerani R., Voorrips R.E. 2006. Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. Journal of General Plant Pathology 72: 335–347. DOI: 10.1007/s10327-006-0299-3


Chen J., Huang J. 2011. Antimicrobial activity of edible mushroom culture filtrates on plant pathogens. Plant Pathology Bulletin 19 (4): 261–270. DOI: 10.3390/app12094591


Cör D., Knez Ž., Hrnčič M.K. 2018. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review. Molecules 23 (3): 649. DOI: 10.3390/molecules23030649


da Cruz M.P., Mazaro S.M., Bruzamarello J. 2019. Bioactive compounds of Ganoderma lucidum activate the defense mechanisms of soy­bean plants and reduce the severity of powdery mildew. Journal of Agricultural Science 11 (13): 99–114. DOI: 10.5539/jas.v11n13p99


De Silva D.D., Rapior S., Fons F., Bahkali A.H., Hyde K.D. 2012. Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Diversity 55: 1–35. DOI: 10.1007/s13225-012-0151-3


Deepatharshini D., Elango A. 2015. Antifungal activity of leaf extract of Eichhorinia crassipes against Ganoderma lucidum causing basal stem rot disease in coconut tree. World Journal of Pharmacy and Pharmaceutical Sciences 4 (6): 859–864.


El Domany E.B., Essam T.M., Ahmed A.E., Farghali A.A. 2018. Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. Journal of Applied Pharmaceutical Science 8 (5): 119–128. DOI: 10.7324/JAPS.2018.8516


FAOSTAT 2021. [dostęp: 29.02.2024].


Fernando K.M.E.P. 2008. The host preference of a Ganoderma lucidum strain for three tree species of Fabaceae family; Cassia nodosa, Cassia fistula and Delonix regia. Journal of the National Science Foundation of Sri Lanka 36 (4): 323–326. DOI: 10.4038/jnsfsr. v36i4.271


Fritz M., Jakobsen I., Lyngkjær M.F., Thordal-Christensen H., Pons-Kühnemann J. 2006. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16 (6): 413–419. DOI: 10.1007/s00572-006-0051-z


Gartemann K.H., Kirchner O., Engemann J., Gräfen I., Eichenlaub R., Burger A. 2003. Clavibacter michiganensis subsp. michiganen­sis: first steps in the understanding of virulence of a gram-positive phytopathogenic bacterium. Journal of Biotechnology 106 (2–3): 179–191. DOI: 10.1016/j.jbiotec.2003.07.011


Gashaw G., Fassil A., Redi F. 2020. Evaluation of the antibacterial activity of Pleurotus spp. cultivated on different agricultural wastes in Chiro, Ethiopia. International Journal of Microbiology 2020: 9312489. DOI: 10.1155/2020/9312489


Gashaw G., Getu A. 2021. Phytochemical characteristics evaluation of Pleurotus species cultivated on agricultural wastes in Chiro, Ethio­pia. Indian Journal of Agricultural Research 55 (3): 289–295. DOI: 10.18805/IJARe.A-526


Ge B.B., Cheng Y., Liu Y., Liu B.H., Zhang K.C. 2015. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahy­groscopicus strain CK-15. Letters in Applied Microbiology 61 (6): 596–602. DOI: 10.1111/lam.12500


Grys A., Hołderna-Kędzia E., Łowicki Z. 2011. Ganoderma lucidum – grzyb o cennych właściwościach farmakologicznych. [Ganoderma lucidum – fungus with valuable pharmacological properties]. Postępy Fitoterapii 1/2011: 28–33.


Hall T.A. 1999. BioEdit: a user friendly biological seque alignment aditor and analysis program for Windows 95/98/NT. Nucleid Acids Symposium Series 41: 95–98.


Ianni F., Blasi F., Angelini P. 2021. Extraction optimization by experimental design of bioactives from pleurotus ostreatus and evaluation of antioxidant and antimicrobial activities. Processes 9 (5): 743. DOI: 10.3390/pr9050743


Jin W., Wu F. 2015. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. BMC Plant Biology 15 (1): 1–14. DOI: 10.1186/s12870-014-0410-4


Kamble R., Venkata S., Gupte A.M. 2011. Antimicrobial activity of Ganoderma lucidum mycelia. Journal of Pure and Applied Microbiol­ogy 5 (2): 983–986.


Kamra A., Bhatt A.B. 2012. Evaluation of antimicrobial and antioxidant activity of Ganoderma lucidum extracts against human patho­genic bacteria. International Journal of Pharmacy and Pharmaceutical Sciences 4 (2): 359–362. DOI: 10.12691/jfnr-2-8-1


Karim M., Daryaei M.G., Torkaman J., Oladi R., Ghanbary M.A.T., Bari E. 2016. In vivo investigation of chemical alteration in oak wood decayed by Pleurotus ostreatus. International Biodeterioration and Biodegradation 108: 127–132. DOI: 10.1016/j.ibiod.2015.12.012


Kozik E.U. 2002. Studies on resistance to bacterial speck (Pseudomonas syringae pv. tomato) in tomato cv. Ontario 7710. Plant Breeding 121 (6): 526–530. DOI: 10.1046/j.1439-0523.2002.00766.x


Kozik E.U., Sobiczewski P. 2000. Response of tomato genotypes to bacterial speck (Pseudomonas syringae pv. tomato). Acta Physiolo­giae Plantarum 22: 243–246. DOI: 10.1007/s11738-000-0021-6


Krupodorova T.A., Barshteyn V.Y., Zabeida E.F., Pokas E.V. 2016. Antibacterial activity of macromycetes mycelia and culture liquid. Microbiology and Biotechnology Letters 44 (3): 246–253. DOI: 10.4014/mbl.1603.03003


Kumar S., Singh R., Kashyap P.L., Srivastava A.K. 2013. Rapid detection and quantification of Alternaria solani in tomato. Scientia Hor­ticulturae 151: 184–189. DOI: 10.1016/j.scienta.2012.12.026


Kumar S.P., Srinivasulu A., Raja Babu K. 2018. Symptomology of major fungal diseases on tomato and its management. Journal of Phar­macognosy and Phytochemistry 7 (6): 1817–1821. DOI: 10.26420/austinjplantbiol.2023.1035


Kumar V., Yadav U. 2014. Screening of antifungal activity of Pleurotus ostreatus and Agaricus bisporus. Biolife 2 (3): 918–923. DOI: 10.13140/RG.2.2.18735.87205


Kües U., Nelson D.R., Liu C. 2015. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles. Phytochemistry 114: 18–37. DOI: 10.1016/j.phytochem.2014.11.019


Lesa K.N., Khandaker M.U., Iqbal F.M.R., Sharma R., Islam F., Mitra S., Emran T.B. 2022. Nutritional value, medicinal impor­tance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus). Journal of Food Quality 2022: 2454180. DOI: 10.1155/2022/2454180


Mansfield J., Genin S., Magori S. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology 13 (6): 614–629. DOI: 10.1111/j.1364-3703.2012.00804.x


McGovern R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73: 78–92. DOI: 10.1016/j. cropro.2015.02.021


Méndez V., Valenzuela M., Salvà-Serra F., Jaén-Luchoro D., Besoain X., Moore E.R.B., Seeger M. 2020. Comparative genomics of pathogenic Clavibacter michiganensis subsp. michiganensis strains from chile reveals potential virulence features for tomato plants. Microorganisms 8 (11): 1679. DOI: 10.3390/microorganisms8111679


Moradali M.F., Mostafavi H., Ghods S., Hedjaroude G.A. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology 7 (6): 701–724. DOI: 10.1016/j.intimp.2007.01.008


Mustafin K., Bisko N., Blieva R., Al-Maali G., Krupodorova T., Narmuratova Z., Saduyeva Z., Zhakipbekova A. 2022. Antioxidant and antimicrobial potential of Ganoderma lucidum and Trametes versicolor. Turkish Journal of Biochemistry 47 (4): 483–489. DOI: 10.1515/tjb-2021-0141


Nandi M., Macdonald J., Liu P., Weselowski B., Yuan Z.C. 2018. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. Molecular Plant Pathology 19 (8): 2036–2050. DOI: 10.1111/mpp.12678


Ocimati W., Were E., Tazuba A.F., Dita M., Zheng S., Blomme G. 2021. Spent Pleurotus ostreatus substrate has potential for managing Fusarium wilt of banana. Journal of Fungi 7 (11): 946. DOI: 10.3390/jof7110946


Ofodile L.N., Ogbe A.O., Oladipupo O. 2011. Effect of the mycelial culture of Ganoderma lucidum on human pathogenic bacteria. Inter­national Journal of Biology 3 (2): 111–114. DOI: 10.5539/ijb.v3n2p111


Owaid M.N., Al-Saeedi S., Al-Assaffii I.A. 2015. Antimicrobial activity of mycelia of oyster mushroom species (Pleurotus spp.) and their liquid filtrates (in vitro). Journal of Medical and Bioengineering 4 (5): 376–380. DOI: 10.12720/jomb.4.5.376-380


Pala S.A., Wani A.H., Ganai B.A. 2019. Antimicrobial potential of some wild macromycetes collected from Kashmir Himalayas. Plant Science Today 6 (2): 137–146. DOI: 10.14719/pst.2019.6.2.503


Parola S., Chiodaroli L., Orlandi V., Vannini C., Panno L. 2017. Lentinula edodes and Pleurotus ostreatus: functional food with antioxi­dant – antimicrobial activity and an important source of vitamin D and medicinal compounds. Functional Foods in Health and Disease 7 (10): 773–794. DOI: 10.31989/ffhd.v7i10.374


Pavlov I.N., Litovka Y.A., Makolova P.V., Timofeev A.A., Litvinova E.A., Enazarov R.K. 2021. Prospects for using Ganoderma lucidum (Curtis) P. Karst. for biological control of phytopathogenic fungi. IOP Conference Series: Earth and Environmental Science 848 (1): 012162. DOI: 10.1088/1755-1315/848/1/012162


Piętka J., Byk A. 2018. Rozkład drewna olszy czarnej Alnus glutinosa (L.) Gaertn. przez grzybnię lakownicy żółtawej Ganoderma luci­dum (Curtis) P. Karst. w warunkach laboratoryjnych. [Decay of black alder Alnus glutinosa (L.) Gaertn. wood by myceliumof Gano­derma lucidum (Curtis) P. Karst. in laboratory conditions]. Sylwan 162 (2): 138–145.


Quereshi S., Pandey A.K., Sandhu S.S. 2010. Evaluation of antibacterial activity of different Ganoderma lucidum extracts. People’s Jour­nal of Scientific Research 3 (1): 9–13.


Radhika R., Rajan S. 2021. Antifungal potentials of Ganoderma lucidum extracts. Plant Cell Biotechnology and Molecular Biology 22 (37–38): 22–27.


Raman J., Jang K.Y., Oh Y.L. 2021. Cultivation and nutritional value of prominent Pleurotus spp.: an overview. Mycobiology 49 (1): 1–14. DOI: 10.1080/12298093.2020.1835142


Rezghi Jahromi M.H., Mozafary M. 2021. Ganoderma lucidum and antimicrobial activity. Journal of Ethno-Pharmaceutical Products 2 (2): 35–41.


Robles-Hernández L., Salas-Salazar N.A., Gonzalez-Franco A.C. 2021. Purification and characterization of antibacterial activity against phytopathogenic bacteria in culture fluids from Ganoderma lucidum. Molecules 26 (18): 5553. DOI: 10.3390/molecules26185553


Saludares G.G., Amper C.D., Lituanas I.M. 2023. Antimicrobial performances of Ganoderma lucidum extract against fruits and leaves pathogens. IOP Conference Series: Earth and Environmental Science 1145 (1): 012019. DOI: 10.1088/1755-1315/1145/1/012019


Sankaran K., Bridge P.D., Gokulapalan C. 2005. Ganoderma diseases of perennial crops in India – an overview. Mycopathologia 159: 143–152. DOI: 10.1007/s11046-004-4437-1


Seweryn E., Ziała A., Gamian A. 2021. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 13 (8): 2725. DOI: 10.3390/nu13082725


Shah K.K., Tiwari I., Modi B., Pandey H.P., Subedi S., Shrestha J. 2021. Shisham (Dalbergia sissoo) decline by dieback disease, root patho­gens and their management: a review. Journal of Agriculture and Natural Resources 4 (2): 255–272. DOI: 10.3126/janr.v4i2.33915


Shahid A.A., Asif M., Shahbaz M., Ali M. 2016. Antifungal potential of Ganoderma lucidum extract against plant pathogenic fungi of Ca­lendula officinalis L. 5th International Conference on Biological, Chemical and Environmental Sciences (BCES-2016), March 24–25, 2016, London (UK). DOI: 10.15242/IICBE.C0316005


Sharma C., Bhardwaj N., Sharma A. 2019. Bioactive metabolites of Ganoderma lucidum: factors, mechanism and broad spectrum thera­peutic potential. Journal of Herbal Medicine 17–18: 100268. DOI: 10.1016/j.hermed.2019.100268


Sonawane A., Mahajan M., Renake S. 2015. Antifungal activity of a fungal isolates against Pomegranate wilt pathogen Fusarium. Inter­national Journal of Current Microbiology and Applied Sciences 4 (2): 48–57.


Srinivas C., Nirmala Devi D., Narasimha Murthy K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity – a review. Saudi Journal of Biological Sciences 26 (7): 1315–1324. DOI: 10.1016/j.sjbs.2019.06.002


Takken F., Rep M. 2010. The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology 11 (2): 309–314. DOI: 10.1111/j.1364-3703.2009.00605.x


Valenzuela M., Besoain X., Durand K. 2018. Clavibacter michiganensis subsp. michiganensis strains from central Chile exhibit low genet­ic diversity and sequence types match strains in other parts of the world. Plant Pathology 67 (9): 1944–1954. DOI: 10.1111/ppa.12911


Vamanu E. 2013. Studies on the antioxidant and antimicrobial activities of Pleurotus ostreatus PSI101109 mycelium. Pakistan Journal of Botany 45 (1): 311–317.


Vancov T., Keen B. 2009. Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiology Letters 296 (1): 91–96. DOI: 10.1111/j.1574-6968.2009.01621.x


Wakeham A., Langton A., Adams S., Kennedy R. 2016. Interface of the environment and occurrence of Botrytis cinerea in pre-symptomatic tomato crops. Crop Protection 90: 27–33. DOI: 10.1016/j.cropro.2016.08.014


Waktola G., Temesgen T. 2020. Pharmacological activities of oyster mushroom (Pleurotus ostreatus). Novel Research in Microbiology Journal 4 (2): 688–695. DOI: 10.21608/nrmj.2020.84017


Wang H., Ng T.B. 2006. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Pep­tides 27 (1): 27–30. DOI: 10.1016/j.peptides.2005.06.009


Weller D.M., Zhang B.X., Cook R.J. 1985. Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat. Plant Disease 69 (8): 710–713.


Williamson B., Tudzynski B., Tudzynski P., Van Kan J.A.L. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8 (5): 561–580. DOI: 10.1111/j.1364-3703.2007.00417.x


Worku M., Sahe S. 2018. Review on disease management practice of tomato wilt caused Fusarium oxysporum in case of Ethiopia. Journal of Plant Pathology and Microbiology 9 (11): 9–12. DOI: 10.4172/2157-7471.1000460


Younis A.M., Wu F.S., El Shikh H.H. 2015. Antimicrobial activity of extracts of the oyster culinary medicinal mushroom Pleurotus os­treatus (higher basidiomycetes) and identification of a new antimicrobial compound. International Journal of Medicinal Mushrooms 17 (6): 579–590. DOI: 10.1615/IntJMedMushrooms.v17.i6.80


Zenelt W., Krawczyk K., Borodynko-Filas N. 2021. Biodiversity and scope of endophytic and phytopathogenic bacterial species identi­fied in plant samples investigated in the Plant Disease Clinic laboratory. Journal of Plant Protection Research 61 (1): 63–82. DOI: 10.24425/jppr.2021.136274


Zhao Y., Thilmony R., Bender C.L., Schaller A., He S.Y., Howe G.A. 2003. Virulence systems of Pseudomonas syringae pv. toma­to promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant Journal 36 (4): 485–499. DOI: 10.1046/j.1365-313x.2003.01895.x

Progress in Plant Protection (2024) : 0-0
Data pierwszej publikacji on-line: 2024-05-17 14:55:23
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy