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ARTYKUL PRZEGLADOWY

Uczenie maszynowe jako narzedzie wspierajgce rozwadj produkcji rzepaku
(Brassica napus L.)

Machine learning as a tool supporting the development of rapeseed
(Brassica napus L.) production

Marek Wéjtowicz! @, Andrzej Wéjtowicz?* @, llona Swierczyriska?

Streszczenie

Rzepak (Brassica napus L.) jest jedng z najwazniejszych roslin oleistych na swiecie. Coraz wieksze znaczenie w jego produkcji zyskuje
uczenie maszynowe, ktére umozliwia prognozowanie plonéw, ocene stanu roslin oraz wspomaganie decyzji agrotechnicznych. W pracy
przedstawiono przeglad badan dotyczgcych wykorzystania réznych algorytmow — od klasycznych modeli, takich jak regresja liniowa,
drzewa decyzyjne, las losowy czy maszyna wektoréw nosnych, po bardziej zaawansowane, w tym sieci neuronowe. Omdwiono zasto-
sowania danych z teledetekcji, obrazowania zarejestrowane z poktadu bezzatogowych statkdw powietrznych i satelitéw oraz czujnikow
naziemnych do monitorowania choréb, streséw sSrodowiskowych i potrzeb nawozowych. Podkreslono potencjat uczenia maszynowego
w zwiekszaniu efektywnosci i zréwnowazeniu produkcji rzepaku, a takze wyzwania zwigzane z jakoscig danych, ztozonoscig modeli i ich
interpretacja.

Stowa kluczowe: uczenie maszynowe, rzepak (Brassica napus L.), prognozowanie plondw, diagnostyka chordéb roslin, rolnictwo
precyzyjne

Abstract

Qilseed rape (Brassica napus L.) is one of the most important oil crops worldwide. Machine learning metchods are gaining increasing im-
portance in oilseed rape production, enabling yield prediction, crop condition assessment, and support for agronomic decision-making.
This paper presents a review of studies on the use of various algorithms — from classical models such as linear regression, decision trees,
random forest, and support vector machine to more advanced ones, including neural networks. Applications of remote sensing data,
unnamed aerial vehicles and satellite imagery, as well as ground-based sensors for monitoring diseases, environmental stresses, and
nutrient requirements are discussed. The potential of machine learning to enhance efficiency and sustainability in rapeseed production
is highlighted, along with challenges related to data quality, model complexity, and interpretability.
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Wstep / Introduction

Rzepak (Brassica napus L.) jest jedng z kluczowych roslin
oleistych uprawianych w Europie i na §wiecie. Jest istot-
nym surowcem do produkcji oleju roslinnego, biopaliw
oraz pasz dla zwierzat. Charakteryzuje si¢ stalym trendem
wzrostu produkcji i powierzchni uprawy. W roku 2023
powierzchnia uprawy rzepaku na $wiecie wynosita okoto
43,5 miliona hektaréw, a produkcja osiggneta 91,9 milio-
na ton (FAOSTAT 2023). Wzrost zapotrzebowania na pro-
dukty pochodzace z rzepaku oraz zmieniajace si¢ warunki
klimatyczne stawiaja przed producentami nowe wyzwania
zwigzane z maksymalizacjg plonéw przy zachowaniu ja-
ko$ci nasion i zréwnowazonego wykorzystania zasobow.
W tym kontekscie rosnie zainteresowanie nowoczesnymi
narzgdziami analitycznymi, w tym metodami uczenia ma-
szynowego, ktoére umozliwiajg integracj¢ i przetwarzanie
duzych zbiorow danych rejestrowanych w warunkach labo-
ratoryjnych i polowych.

Uczenie maszynowe polega na tym, ze algorytmy
realizuja okreslone zadania na podstawie danych wejscio-
wych bez koniecznos$ci wczesniejszego programowania
regut. Modele uczenia maszynowego mozna podzieli¢ na
dwa gtowne typy: nienadzorowane i nadzorowane. Mode-
le uczenia nienadzorowanego nie korzystaja z etykietowa-
nych danych. Ich celem jest odkrywanie w danych ukrytych
struktur, zaleznosci lub grup. Algorytmy nienadzorowane
przetwarzaja dane w catosci i samodzielnie identyfikuja
wzorce, takie jak grupowanie podobnych obserwacji (kla-
steryzacja) czy redukcja wymiardw, co pozwala lepiej zro-
zumie¢ charakter danych i znalez¢ w nich ukryte informa-

cje. W przypadku modeli nadzorowanych proces uczenia
polega na tym, Ze najpierw zbierane sg dane etykietowane,
ktére nastgpnie dzieli si¢ na zbidr treningowy i testowy.
W procesie uczenia nadzorowanego etykiety pelnig dwie
rozne funkcje: podczas treningu sg wykorzystywane do kie-
rowania uczeniem modelu, umozliwiajac mu dopasowanie
przewidywan do rzeczywistych wynikow, natomiast w fa-
zie ewaluacji shuzg wylacznie do oceny jakos$ci predykeji,
pozwalajac zweryfikowaé, na ile model poprawnie prze-
widuje wyniki dla nowych danych. Model uczy si¢ na da-
nych treningowych, dopasowujac swoje parametry, aby jak
najlepiej przewidywa¢ wyniki. Po wytrenowaniu model
jest gotowy do uzycia, a jego skuteczno$¢ jest sprawdza-
na na danych testowych, oceniajac, jak dobrze radzi sobie
z nowymi, wezesniej niewidzianymi danymi. Na rysunku
1. przedstawiono schemat dziatania uczenia maszynowego
nienadzorowanego i nadzorowanego, a w tabeli 1. krotkie
charakterystyki najbardziej popularnych algorytmow.
Najwazniejsze zalety algorytméw uczenia maszynowe-
go to: zastgpowanie powtarzalnej i zmudnej pracy cztowie-
ka oraz zdolno$¢ do odkrywania ztozonych i subtelnych
wzorcow, niedostgpnych dla przecigtnego obserwatora.
Uczenie maszynowe znalazto z powodzeniem zastoso-
wanie w roznych dziedzinach od inzynierii kosmiczne;j,
finanséw 1 rozrywki, po biologi¢, medycyne i rolnictwo.
W rolnictwie wykorzystywane jest w wielu obszarach, w tym
w prognozowaniu plonéw, wykrywaniu choréb i szkodni-
kow, fenotypowaniu odmian, a takze w ocenie jakosci na-
sion 1 optymalizacji praktyk agrotechnicznych. Integracja
uczenia maszynowego z danymi pochodzacymi z dronéw,
satelitow, sensorow polowych oraz laboratoriow analitycz-

Uczenie nienadzorowane — Unsupervised learning

Dane wejsciowe (bez etykiet)
Input data (unlabeled)

l

Model uczenia nienadzorowanego
Unsupervised learning model

l

Wynik (grupy, wzorce, redukcja wymiaréw)
Output (groups, patterns, dimensionality reduction)

Uczenie nadzorowane — Supervised learning

Dane wejsciowe
Input data

/

Dane treningowe (etykietowane™)
Training data (labeled™)

/

Model uczenia nadzerowanego
Supervised learning model Test data (labeled™*)

~,

Wynik (doktadnosé, czulose, specyficznosé)
Output (accuracy, sensitivity, specificity)

Dane testowe (etykietowane**)

*podczas treningu, etykiety sa wykorzystywane do nadzorowania uczenia modelu - during training, labels are used to guide the model’s learning
**w fazie ewaluacji etykiety stuzg wylacznie do oceny jakosci predykcji — in the evaluation phase, labels are used solely to assess the quality of

predictions

Rys. 1. Schemat dziatania uczenia maszynowego nienadzorowanego i nadzorowanego

Fig. 1. Scheme of unsupervised and supervised machine learning
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Tabela 1. Charakterystyki wybranych modeli uczenia maszynowego
Table 1. Characteristics of selected machine learning models

Nazwa algorytmu
Algorithm name

Opis algorytmu
Algorithm description

Uczenie nienadzorowane — Unsupervised learning

K-means

Popularny algorytm klastrowania dzielacy dane na k klastroéw na podstawie podobienstwa
punktéow. Wymaga podania liczby klastrow z gory.

Zastosowanie: segmentacja klientow, analiza obrazow.

A popular clustering algorithm that divides data into k clusters based on the similarity of points.
It requires specifying the number of clusters in advance.

Applications: customer segmentation, image analysis.

HCA
(Hierarchical Cluster Analysis)

Stuzy do grupowania danych w hierarchiczng strukture klastrow.
Wynikiem jest dendrogram pokazujacy podobienstwa mi¢dzy obiektami.
Zastosowanie: biologia, analiza rynku.

It is used to group data into a hierarchical cluster structure.

The result is a dendrogram showing the similarities between objects.
Applications: biology, market analysis.

PCA
(Principal Component Analysis)

Wykorzystywany jest do redukcji wymiarowosci poprzez przeksztatcenie danych w nowe,
niepowigzane zmienne. Zachowuje najwazniejsza zmiennos$¢ danych.

Zastosowanie: wizualizacja danych, redukcja redundancji.

It is used for dimensionality reduction by transforming data into new, uncorrelated variables.
It preserves the most important variability in the data.

Applications: data visualization, redundancy reduction.

Uczenie nadzorowane — Supervised learning

Model zespotowy laczacy wiele drzew decyzyjnych; klasa obiektu ustalana wigkszo$cia gtosow.

RF Zastosowanie: klasyfikacja obrazow, prognozowanie plonow.

(Random Forest) Model combines multiple decision trees; the class of an object is determined by majority voting.
Applications: image classification, crop yield prediction.
Tworzy granice mi¢dzy punktami danych w przestrzeni cech.

SVM Zastosowanie: rozpoznawanie obrazow, analiza tekstu.

(Support Vector Machine)

It creates boundaries between data points in the feature space.
Applications: image recognition, text analysis.

ELM
(Extreme Learning Machine)

Szybka, jednokierunkowa sie¢ neuronowa do regresji i klasyfikacji w czasie rzeczywistym.
Zastosowanie: rozpoznawanie obrazow.

A fast, feedforward neural network for real-time regression and classification.
Applications: image recognition.

CNN
(Convolutional Neural Network)

Gleboka sie¢ neuronowa z warstwami konwolucyjnymi, skuteczna w analizie danych
przestrzennych i obrazow.

Zastosowanie: rozpoznawanie obrazow, detekcja obiektow.

A deep neural network with convolutional layers, effective in analyzing spatial data and images.
Applications: image recognition, object detection.

nych pozwala nie tylko na automatyzacj¢ procesow, ale
réwniez na podejmowanie decyzji na poziomie precyzyjne-
go rolnictwa (Xie 1 Yang 2020).

Celem niniejszego artykutu jest przeglad aktualnych za-
stosowan metod uczenia maszynowego w produkcji rzepa-
ku oraz oméwienie mozliwosci, jakie te technologie oferuja
w kontekscie zwigkszenia efektywnosci i zrownowazonego
rozwoju upraw. Artykul obejmuje zagadnienia zwigzane
z hodowla i fenotypowaniem, diagnostyka choréb i stre-
sow srodowiskowych, prognozowaniem plonéw, oceng ja-
kosci nasion oraz optymalizacja praktyk agrotechnicznych
(tab. 2). Ponadto wskazane sa wyzwania, ograniczenia oraz
perspektywy dalszego rozwoju tej dziedziny.

Przeglad literatury zostat przeprowadzony z wyko-
rzystaniem wyszukiwarki Google Scholar. Kryteriami
doboru publikacji byly: zakres czasowy obejmujacy lata
2017-2024, jezyk publikacji (artykuly w jezyku angiel-
skim) oraz dostepnos¢ pelnego tekstu lub streszczenia
umozliwiajacego ocen¢ metod i wynikdéw. Wyszukiwanie
opieralo si¢ na kombinacjach stow kluczowych, takich jak:
,machine learning” and ,,rapeseed”, ,,yield prediction” and
,Brassica napus”, a takze wariantach zwigzanych z dia-
gnostyka chordb ro$lin i rolnictwem precyzyjnym. Proces
selekcji obejmowat wstepne przegladanie tytutow i abstrak-
tow, a nastepnie petnych tekstow artykutow spetniajacych
kryteria tematyczne i jakosciowe. Lacznie przeanalizowano
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Tabela 2. Przyktady zastosowania metod uczenia maszynowego w badaniach nad rzepakiem

Table 2. Examples of the application of machine learning methods in rapeseed research

Metryki
Literatura Zastosowanie Rodzaj danych Zrédto danych Wybrany model statystyczne
References Application Data type Data source Selected model Statistical
metrics
liczba dni do dojrzatosci
fizjologicznej, liczba
luszczyn na roélinie, .

. . h . . R*=0,84
Shahsavari plon nasion wysokos¢ roslin laboratorium multilayer perceptron RMSE = 0283
i wsp. (2023) seed yield number of days to laboratory neural network (MPNN) L

. . . MAE = 0,224
physiological maturity,
number of pods per
plant, plant height
. . o . bezzatogowy decision tree-based )
Xie 1 wsp. dynamika kwitnienia zobrazowania RGB statek powictrzny segmentation model R*=0,97
(2022) flowering dynamics RGB imagery unmanned aerial vehicle (DTSM) RMSE = 0,051
klasyfikacja odmian dokladnodé
Qadri i wsp. rzepaku zobrazowania RGB laboratorium artificial neural network | Accuracy —
(2021) rapeseed variety RGB imagery laboratory (ANN) Y
U 0,95-0,98%
classification
. 1dentyﬁkac3.a zgm.hzny zobrazowania . partial least squares- doktadnosé —
Konga i wsp. twardzikowe;j . laboratorium N . -
. . . hiperspektralne discriminant analysis |accuracy = 0,90;
(2018) identification hvperspectral image laboratory (PLS-DA) 0.97: 1.00
of Sclerotinia rot YPersp gery o
. monitoring pomiary hiperspektralne s R>=0,94
(Tza(l)lﬁg;) Wsp- wilgotnosci gleby hyperspectral p:):eecl?;‘z;iglc fiilll(lle random forest (RF) RMSE = 0,005
soil moisture monitoring measurements P MRE = 0,031
convolutional neural
monitoring zawartosci sobrazowania network regression with
Zhang i wsp. wody w liSciach hierspektralne laboratorium attention mechanism R?=0,81
(2023) leaf water content PerSpextr laboratory and long short-term | RMSEP = 0,005
oo hyperspectral imagery
monitoring memory
(CNN-ATT-LSTM-R)
Xia i wsp. stres zalania roslin hﬁ;:i:;glz?;ie laboratorium quadratic discriminant | doktadno$é¢ —
(2019) plant flooding stress hyperspectral imagery laboratory analysis (QDA accuracy = 0,96
doktadnos¢ —
bezzalozow accuracy = 0,93
Liiwsp. stres wymarzania zobrazowania RGB statek bo vfietan convolutional neural | F-score = 0,80
(2022) frost stress RGB imagery pow Y network (CNN) czutos¢ —
unmanned aerial vehicle e
sensitivity =
0,80
Zhou i wsp. Wyywatie Z'obrazowama laboratorium transfer stacked auto- dOkiadngsc N
(2023) metali cigzkich hiperspektralne laborator encoder (T-SAE) accuracy = 0,99
heavy metal detection | hyperspectral imagery Y R?=0,92-0,93
zobrazowania RGB bezzatosow
Hu i wsp. predykcja plonu nasion i hiperspektralne statek po v%ietr}z/ny random forest R?=10,93
(2024) seed yield prediction | RGB aqd hyperspectral unmanned aerial vehicle regression (RFR) RRMSE = 0,059
imagery
.. . . zobrazowania bezzatogowy extreme gradient R?=0,58-0,77
Shi i wsp. predykcja plonu nasion . . . . N
(2024) seed vield prediction multispectralne statek powietrzny boosting regression RMSE =
yielep multispectral imagery |[unmanned aerial vehicle (XGBR) 0,005-0,011
2
Rajkovi¢ i wsp.| predykcja plonu nasion genotyp, rok pole doswiadczalne random forest I}:Ms(;f:l
(2022) seed yield prediction genotype, year experimental field regression (RFR) 227082
Zhang 1 wsp. owielri(ifllt(lsi lidcia p omlelllry };I;erescfi ili(ltralne pole doswiadczalne random forest R*=0,81
(2023) p Ypersp experimental field regression (RFR) RMSE = 0,455

leaf area index

measurements
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Tabela 2. Przyklady zastosowania metod uczenia maszynowego w badaniach nad rzepakiem — cd.
Table 2. Examples of the application of machine learning methods in rapeseed research — continued

Metryki
Literatura Zastosowanie Rodzaj danych Zré6dto danych Wybrany model statystyczne
References Application Data type Data source Selected model Statistical
metrics
.. indeks zobrazowania . R?=0,52
Wei i wsp. . g . satelita random forest -
(2017) powierzchni liscia multispectralne satellite regression (RFR) RMSE = 0,923
leaf area index multispectral imagery & RRMSE = 0,937
predykcja masy
1000 nasion, R2=10,89; 0,94;
Rajkovi¢ 1 wsp.|zawartosci oleju i biatka genotyp, rok laboratorium random forest 0,94
(2022) prediction of thousand- genotype, year laboratory regression (RFR) RMSE =0,179;
seed weight, oil content, 0,581, 0,501
and protein content
Yu i wsp. zaviljrlti(s?zicaziotu hZiOE;:ZZ]Z :a?llr':le laboratorium fully-connected neural R?=10,90
(2018) ’ Perspextr laboratory network (FNN) | RMSEP = 0,003
leaf nitrogen content | hyperspectral imagery
zawarto$¢ azotu, fosforu
Abdalla i wsp. niltrIZ)Otzrslu Vfl(fssllll:)l;zs zobrazowania RGB pole doswiadczalne |long-short term memory| doktadnos$¢ —
(2020) gen, phosp § RGB imagery experimental field (LST™M) accuracy = 0,95
and potassium content
in the plant
zobrazowania
Feng i wsp. termin zbioru rzepaku i;ieig?rei(etriis laboratorium support vector machine | doktadno$¢ —
(2024) rapeseed harvest date P laboratory (SVM) accuracy = 0,98
hyperspectral imagery
of rapeseed seeds

20 publikacji, koncentrujac si¢ na badaniach empirycznych
istotnych dla zastosowania uczenia maszynowego w pro-
dukcji rzepaku.

Wykorzystanie uczenia maszynowego

do optymalizacji hodowli i uprawy rzepaku /
Application of machine learning

for optimizing rapeseed breeding and cultivation

Hodowla odmian / Variety breeding

Hodowla rzepaku wymaga doktadnej oceny cech fenoty-
powych, takich jak: wysokos$¢ ro$lin, liczba i dtugosé roz-
galezien, liczba kwiatostanow i tuszczyn czy masa tysigca
nasion. Tradycyjne metody pomiaru sg czasochlonne i po-
datne na subiektywizm, co utrudnia szybki postep w pro-
gramach hodowlanych (Li i wsp. 2022). W ostatnich latach
rosngce mozliwosci pozyskiwania danych z dronow (UAV),
zdje¢ multispektralnych i hiperspektralnych, a takze syste-
méw wysokoprzepustowego fenotypowania przyczyniaja
si¢ do rozwoju nowoczesnych metod wspierajacych selek-
cj¢ odmian. Uczenie maszynowe pozwala na automatycz-
ne przetwarzanie duzych zbioréw danych fenotypowych
i efektywng selekcje cech w procesie hodowlanym, ukie-
runkowang na wybor tych najsilniej zwigzanych z plonem
ro$lin. Takie badania prowadzili Shahsavari i wsp. (2023),
ktorzy poréwnali skutecznos$¢ pigciu metod regresyjnych

w prognozowaniu plonu nasion rzepaku z wykorzystaniem
pigtnastu cech morfologiczno-rozwojowych (wysokos¢ ro-
$liny, liczba tuszczyn na pedzie gtdéwnym, liczba tuszczyn
na pedach bocznych, liczba tuszczyn na roslinie, liczba
pedow na roslinie, dtugos$¢ pedu gldwnego, wysokos¢ osa-
dzenia pierwszej tuszczyny od powierzchni gleby, dtugos¢
huszczyny, liczba dni do poczatku kwitnienia, liczba dni
do konca kwitnienia, liczba dni do fizjologicznej dojrza-
losci, okres kwitnienia, masa tysigca nasion, liczba nasion
w tuszczynie, $rednica lodygi). Najwyzsza doktadnos¢
prognozy uzyskano przy zastosowaniu modelu nu-support
vector regression (NuSVR) (R? = 0,86; RMSE = 0,266;
MAE = 0,210), a najwazniejszymi cechami istotnie wpty-
wajacymi na plon nasion okazaty si¢: liczba dni do dojrzato-
$ci fizjologicznej, liczba tuszczyn na roslinie oraz wysokosé¢
ro$lin. Wymienione cechy uwzgledniono przy opracowaniu
modelu multilayer perceptron neural network (MLPNN),
ktory charakteryzowat si¢ nastgpujacymi parametrami:
R? = 0,84; RMSE = 0,283; MAE = 0,224. Wyniki badan
wykazaty, ze zastosowanie metod uczenia maszynowe-
go umozliwia doktadne przewidywanie plonu rzepaku na
podstawie mniejszej liczby cech, a tym samym pomaga
w optymalizacji i przyspieszeniu programow hodowlanych
rzepaku.

Z kolei Xie i wsp. (2022) zajmowali si¢ oceng dynamiki
kwitnienia réznych genotypow rzepaku z zastosowaniem
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zdje¢ RGB rejestrowanych z poktadu bezzatogowego stat-
ku powietrznego. Autorzy wykazali, ze doktadnos¢ wyod-
rebniania obszaréw kwitnienia przy uzyciu modelu decision
tree-based segmentation model (DTSM) byta wyzsza niz
przy zastosowaniu: naive Bayes (NB), k-nearest neighbours
(KNN), random forest (RF) i support vector machine (SVM)
dla wszystkich odmian i terminéw kwitnienia, osiagajac
R? = 0,97 i RMSE = 0,051. W badaniu wykazano zr6z-
nicowanie dynamiki kwitnienia analizowanych odmian.
Wszystkie odmiany zostaty sklasyfikowane w cztery klastry
na podstawie analizy skupien metoda k-$rednich (k-means),
ktore roznily si¢ przede wszystkim terminem osiagnigcia pet-
ni kwitnienia oraz terminem rozpoczgcia kwitnienia. Wyniki
tego badania mogg stanowi¢ podstawg do prowadzenia ho-
dowli rzepaku opartej na analizie dynamiki kwitnienia.

Uczenie maszynowe znalazto réwniez zastosowanie
w klasyfikacji odmian rzepaku na podstawie zdjg¢ RGB
(Qadri 1 wsp. 2021). Autorzy wykazali, ze zastosowanie
modelu artificial neural network (ANN) pozwalato skutecz-
nie rozréznia¢ osiem odmian rzepaku uzyskujac bardzo wy-
soka doktadnos¢ na poziomie 0,95-0,98.

Diagnostyka chorob i streséw Srodowiskowych /
Diagnosis of diseases and environmental stresses

Choroby oraz stresy $rodowiskowe, takie jak susza, mroz
czy niedobory sktadnikéw odzywczych, znaczaco ogra-
niczaja plon i jako$¢ nasion rzepaku. Tradycyjne metody
diagnostyki, oparte na wizualnej ocenie pola lub laborato-
ryjnych testach, s czasochtonne i nie zawsze pozwalaja na
szybkie wykrycie zagrozen.

Przyktadem ilustrujagcym efektywne wykorzystanie
uczenia maszynowego do wykrywania chordb roslin sg ba-
dania Konga i wsp. (2018), ktorzy zastosowali cztery mo-
dele dyskryminacyjne, w tym partial least squares-discrimi-
nant analysis (PLS-DA), support vector machine (SVM),
soft independent modeling of class analogies (SIMCA)
i k-nearest neighbors (KNN) do identyfikacji objawow
zgnilizny twardzikowej na lisciach rzepaku ozimego zare-
jestrowanych z wykorzystaniem kamery hiperspektralnej
(ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland).
Za pomocg wymienionych modeli autorzy analizowali
zmienno$¢ jasnosci pikseli obrazu, odpowiadajacych ob-
szarom li$ci zdrowych oraz porazonych w réznym stopniu.
Przeprowadzone na trzech niezaleznych zestawach danych
badania wykazaty, ze najefektywniejszym modelem byt
PLS-DA, ktérego doktadno$¢ wykrywania analizowanej
choroby wynosita w zaleznosci od zestawu uzytych danych
0,90; 0,971 1.

Uczenie maszynowe znalazto réwniez zastosowanie
w identyfikacji reakcji roslin na stresy abiotyczne. Tang
i wsp. (2024) potwierdzili mozliwo$¢ doktadnego monito-
rowania wilgotnosci gleby w strefie korzeniowej rzepaku
ozimego przy uzyciu danych hiperspektralnych zarejestro-
wanych z uzyciem spektrometru polowego (ASD Field-

-Spec 3). Do estymacji wilgotnosci gleby zastosowano
cztery modele: support vector machine (SVM), random
forest (RF), back propagation neural network (BPNN) i ex-
treme learning machine (ELM). Najlepsze wyniki osiagnat
model random forest (RF) dla glgbokosci gleby 0-20 cm,
uzyskujac wysoki wspotczynnik determinacji R?> = 0,94,
niski btad Sredniokwadratowy RMSE = 0,005 oraz $redni
wzgledny btad MRE = 0,031.

Oproécz badan poswigconych zawartosci wody w glebie
prowadzone byly prace nad zawarto$cia wody w liSciach
rzepaku. Przyktadowo Zhang i wsp. (2023a) z wykorzy-
staniem zobrazowan zarejestrowanych za pomoca kamery
hiperspektralnej FX17 (Spectral Imaging Ltd., Oulu, Fin-
land) ocenili przydatno$¢ do realizacji tego celu nastepuja-
cych modeli: support vector regression (SVR), partial least,
squares regression (PLSR), least absolute shrinkage i selec-
tion operator (LASSO), convolutional neural network regres-
sion with attention mechanism and long short-term memory
(CNN-ATT-LSTM-R). Najwigksza doktadnos¢ wykazat mo-
del CNN-ATT-LSTM-R. Wspodtczynnik determinacji (R?)
i blad $redniokwadratowy dla zbioru testowego (RMSEP)
tego modelu wynosily odpowiednio 0,81 i 0,005.

Z kolei Xia i wsp. (2019) podjeli probe identyfikacji
stresu wynikajacego z zalania roslin rzepaku. Do budo-
wy modeli klasyfikacyjnych porownujacych spektra lisci
poddanych réznym poziomom zalania wodnego w trzech
zbiorach danych zgromadzonych z uzyciem kamery hiper-
spektralnej Pika XC, zastosowali Quadratic discriminant
analysis (QDA), k-nearest neighbor (KNN) i support vector
machine (SVM). Najlepsza doktadnos$¢ klasyfikacji wyno-
szacg 0,96 uzyskano z zastosowaniem modelu QDA.

Ciekawe badania przedstawili Li i wsp. (2022), kto-
rzy zastosowali convolutional neural network (CNN) do
rozpoznawania materialtdow hodowlanych rzepaku odpor-
nych na przemarzanie, osiaggajac nastepujace wartosci klu-
czowych parametréw statystycznych: doktadnos¢ = 0,93;
F-score = 0,80 oraz czutos¢ = 0,80. Badanie wykazato, ze
wykorzystanie zobrazowan RGB zarejestrowanych z pokta-
du bezzalogowego statku powietrznego (UAV) w potacze-
niu z glebokim uczeniem pozwala automatycznie i efektyw-
nie identyfikowa¢ materiaty hodowlane odporne na mréz
w duzych populacjach roslin, oferujac ekonomiczng, wy-
godna i precyzyjng metod¢ wspierajacg hodowcow w selek-
cji i zarzadzaniu materiatami roslinnymi.

Kolejnym zagadnieniem podejmowanym z zastosowa-
niem uczenia maszynowego w zakresie detekcji stresow
srodowiskowych sa badania zawarto$ci metali cigzkich
w ro$linach rzepaku. Zhou i wsp. (2023) opracowali model
do przewidywania zawartosci otowiu (Pb) w roslinach rze-
paku, wykorzystujacy obrazowanie hiperspektralne. Dane
spektralne lisci 1 korzeni rzepaku pozyskano przy réznych
warto$ciach Pb. Opracowany model — transfer stacked au-
to-encoder (T-SAE) osiagnat 0,99 doktadnos$ci klasyfikacji
gradientu stresu Pb, a wspotczynniki determinacji dla za-
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warto$ci Pb w lisciach i korzeniach wyniosty odpowiednio
0,9210,93.

Prognozowanie plonéw oraz parametréw lisci i nasion /
Prediction of yields, as well as leaf and seed traits

Prognozowanie plonow jest kluczowe zaré6wno dla plano-
wania produkcji, jak i zarzadzania ryzykiem w rolnictwie.
Tradycyjne metody oparte na analizie danych historycz-
nych, obserwacjach polowych oraz modelach empirycz-
nych, sg czasochlonne i podatne na btedy. Uczenie maszy-
nowe umozliwia wykorzystanie duzych zbiorow danych
pochodzacych z dronéw, satelitow, sensoréw polowych
oraz laboratoriow analitycznych do tworzenia precyzyjnych
modeli predykcyjnych (Omia i wsp. 2023).

Przyktadem ilustrujagcym zastosowanie dronéw sg ba-
dania Hu i1 wsp. (2024), ktorzy analizowali zdjecia RGB
i hiperspektralne rzepaku w fazie siewki, pgkowania, kwit-
nienia oraz tworzenia tuszczyn. Z obrazow hiperspektral-
nych wyodrebniono i obliczono reflektancj¢ pokrywy ro-
$linnej oraz wskazniki spektralne. Po przeprowadzeniu
analizy korelacji i analizy glownych sktadowych z zasto-
sowaniem modelu principal component analysis (PCA)
wybrano wskazniki spektralne, ktore postuzyty do budowy
modeli predykcji plonéow przy uzyciu random forest regres-
sion (RF), multiple linear regression (MLR) i support vector
machine regression (SVM). Wyniki wykazaty, ze podejscia
oparte na uczeniu maszynowym, mogg poprawi¢ doktad-
no$¢ predykeji plonéw w pordwnaniu z metodami tradycyj-
nymi, takimi jak regresja wielokrotna. Model oparty na RF
uzyskat najwyzszy wspotczynnik determinacji (R? = 0,93)
oraz najnizszy wzgledny blad pierwiastkowy $redniokwa-
dratowy (RRMSE = 0,059). Natomiast model regresji wie-
lokrotnej osiagnat R?= 0,73 oraz RRMSE = 0,113. Ponadto,
stwierdzono ze etap pakowania byt najlepszy do progno-
zowania plonéw rzepaku w porownaniu z innymi fazami
wzrostu.

Z kolei Shi i wsp. (2024) w prognozowaniu plonu rze-
paku na podstawie zobrazowan multispektralnych zareje-
strowanych z pokladu bezzalogowego statku powietrznego,
oprocz tradycyjnej regresji liniowej, zastosowali trzy mode-
le uczenia maszynowego: random forest regression (RFR),
support vector regression (SVR) oraz extreme gradient bo-
osting regression (XGBR). Autorzy wykazali, ze wszystkie
trzy algorytmy przewyzszaja regresj¢ liniowa pod wzgle-
dem doktadnos$ci prognoz, a najdoktadniejszym modelem
okazat si¢ XGBR.

Przyktadem zastosowania uczenia maszynowego do
prognozowania plonu nasion rzepaku sg réwniez badania
Rajkovi¢a 1 wsp. (2022). Na podstawie informacji o ge-
notypie, odzwierciedlajagcym zmienno$¢ biologiczng oraz
roku badan, odzwierciedlajacym zmienno$¢ srodowiskowa,
opracowali oni dwa algorytmy uczenia maszynowego: ar-
tificial neural networks (ANN) i random forest regression
(RFR). Na podstawie uzyskanych wynikéw wykazali prze-

wage modelu RFR (R?=0,91; RMSE = 227,082) nad ANN
(R*=0,83; RMSE = 303,249).

Oprocz prognozowania plonu, uczenie maszynowe zna-
lazto zastosowanie w szacowaniu indeksu powierzchni lisci
(LAI), kluczowego wskaznika dla oceny wzrostu i rozwoju
ro$lin uprawnych. Zhang i wsp. (2023b) na podstawie da-
nych zarejestrowanych z uzyciem polowego spektrometru
ASD sprawdzili przydatnos¢ do tego celu trzech algoryt-
méw uczenia maszynowego: back propagation neural ne-
twork (BPNN), support vector machine (SVM) i random
forest (RF). Sposrod testowanych algorytméw najwyzsza
doktadnos¢ estymacji indeksu LAl uzyskano dla modelu RF
(R?*=0,81; RMSE = 0,455), co potwierdza jego przydatnosé¢
W monitorowaniu wzrostu rzepaku.

Z kolei Wei i wsp. (2017) podjeli si¢ opracowania mo-
delu do szacowania LAI na podstawie zdje¢ satelitarnych.
Do mapowania LAI rzepaku ozimego wykorzystano ran-
dom forest regression (RFR) w ramach hybrydowej metody
inwersji, taczacej optymalne wskazniki roslinnosci (NDVI,
MSR, ARVI) z odbiciem satelitarnym wysokiej rozdziel-
czosci, co pozwolilo na przestrzenne odwzorowanie LAl na
poziomie polowym. Zgodno$¢ estymowanych wartosci LAI
z pomiarami terenowymi wyniosta R? = 0,52.

Zakres zastosowan uczenia maszynowego w badaniach
nad rzepakiem obejmuje réwniez oceng jakosci nasion. Do
najwazniejszych cech jakosciowych nasion rzepaku naleza
zawarto$¢ thuszczu i biatka oraz profil kwaséw tluszczo-
wych, determinujacy warto$¢ odzywcza i technologiczng
nasion. Rajkovi¢ 1 wsp. (2022) wykazali, ze wykorzysta-
nie algorytmu random forest regression (RFR) umozliwia
skuteczng predykcje takich cech, jak masa 1000 nasion
(R*= 0,89; RMSE = 0,179), a takze zawarto$¢ oleju
(R*=0,94; RMSE = 0,581) i biatka (R>= 0,94; RMSE =
0,501). Do opracowania modelu wykorzystano informacje
o genotypie, odzwierciedlajgcym zmienno$¢ biologiczng
oraz roku badan, odzwierciedlajacym zmienno$¢ srodowi-
skowa.

Optymalizacja praktyk agrotechnicznych / Optimiza-
tion of agronomic practices
Optymalizacja praktyk agrotechnicznych jest kluczowa
dla zwigkszenia wydajnos$ci rzepaku, poprawy jako$ci na-
sion oraz ograniczenia negatywnego wpltywu na $rodowi-
sko. Tradycyjne podejscia oparte na doswiadczeniu rolni-
kow lub ogoélnych zaleceniach agronomicznych nie zawsze
uwzgledniajg zmienno$¢ warunkow lokalnych, co moze
prowadzi¢ do suboptymalnych wynikoéw. Metody uczenia
maszynowego pozwalaja na tworzenie modeli wspomagaja-
cych decyzje dotyczgce nawozenia oraz termindw zbiorow.
Yu i wsp. (2018) potwierdzili mozliwos¢ szybkiego
i nieinwazyjnego oznaczania zawarto$ci azotu w lisciach
rzepaku przy uzyciu metod uczenia maszynowego pola-
czonych z technikami obrazowania hiperspektralnego. Spo-
$réd testowanych modeli (PLS — partial least square, SVM
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— support vector machine, FNN — fully-connected neural
network) najwyzsza skutecznoscig charakteryzowat si¢ mo-
del FNN, dla ktorego warto$ci R? wyniosty 0,90; a RMSEP
0,003.

Wigkszy zakres badan obejmujacy oprocz azotu réwniez
szacowanie zawarto$ci fosforu i potasu zaproponowali Ab-
dalla i wsp. (2020), ktérzy z zastosowaniem modelu long-
-short term memory (LSTM), przeprowadzili klasyfikacje
stanu odzywienia rzepaku na podstawie sekwencji zobra-
zowan RGB. Opracowana metoda pozwala z dokladno-
$cig rowng 0,95 na automatyczng ocen¢ stanu odzywienia
w catym cyklu zycia roslin i ma potencjat w zastosowaniach
rolnictwa precyzyjnego.

Przyktadem badan ukierunkowanych na ustalenie opty-
malnego terminu zbioru rzepaku prowadzonych z wyko-
rzystaniem metod uczenia maszynowego jest praca Fenga
1 wsp. (2024), ktorzy zastosowali kilka algorytmow uczenia
maszynowego [extreme learning machine (ELM), k-nearest
neighbor (KNN), random forest (RF), partial least-squares
discriminant analysis (PLSDA), support vector machine
(SVM)] w potaczeniu z obrazowaniem hiperspektralnym
nasion rzepaku. Najlepszy wynik uzyskano z zastosowa-
niem modelu SVM, osiggajac doktadnos¢ 0,98. Wyniki po-
kazuja, ze dojrzatos¢ rzepaku moze by¢ szybko i nieinwa-
zyjnie oceniana za pomocg obrazowania hiperspektralnego,
co utatwia wybdr optymalnego terminu zbioru.

Wyzwania i perspektywy rozwoju / Challenges and
development prospects

Pomimo rosnacego zainteresowania uczeniem maszyno-
wym w produkcji rzepaku ozimego oraz licznych sukcesow,
nadal istnieje wiele wyzwan, ktore ograniczaja petne wyko-
rzystanie tych technologii. Jednym z gléwnych problemow
jest zbieranie i jako§¢ danych, poniewaz dane rolnicze sg
czesto heterogeniczne, niestrukturalne i niekompletne, co
utrudnia ich gromadzenie i analiz¢, a dodatkowo na ich
wiarygodno$¢ wptywaja takie czynniki, jak warunki po-
godowe, obecno$¢ szkodnikow czy wystepowanie chorob.
Kolejng trudnoscia jest brak standaryzacji, gdyz rolnictwo
charakteryzuje si¢ duzym zroéznicowaniem upraw, rodza-
jow gleb i systeméw gospodarowania, co utrudnia ujedno-
licenie proceséw zbierania danych i tym samym ogranicza
mozliwos¢ tworzenia doktadnych i skalowalnych modeli
uczenia maszynowego. Istotnym wyzwaniem pozostaje
réwniez ograniczona dostgpnos¢ danych treningowych,
niezb¢dnych do prawidlowego dzialania algorytméw, ktore
wymagaja duzych zbioréw informacji, a w rolnictwie czgsto
ich brakuje. Dodatkowa barier¢ stanowi integracja uczenia
maszynowego z istniejagcymi praktykami rolniczymi, ponie-
waz wielu rolnikoéw nie zna zasad jego dziatania lub nie po-
siada odpowiednich narzedzi i zasobow, aby skutecznie je
wdrozy¢. Waznym ograniczeniem jest takze infrastruktura,
gdyz algorytmy uczenia maszynowego wymagaja znacznej
mocy obliczeniowej i duzej pojemnos$ci magazynowania

danych, co bywa problematyczne w regionach o stabo roz-
wini¢tej infrastrukturze, typowych dla obszarow wiejskich.
Nie bez znaczenia sa rowniez koszty, poniewaz wdrazanie
rozwigzan opartych na uczeniu maszynowym w rolnictwie
jest kosztowne, a zwrot z inwestycji czgsto nie jest natych-
miastowy ani oczywisty, co szczegolnie utrudnia korzysta-
nie z tych technologii matym gospodarstwom i lokalnym
spoteczno$ciom.

Perspektywy rozwoju uczenia maszynowego w pro-
dukcji rzepaku sa jednak obiecujace. Integracja uczenia
maszynowego z sensorami polowymi oraz systemami sa-
telitarnymi pozwala na tworzenie modeli predykcyjnych
dziatajacych w czasie rzeczywistym. Polaczenie danych
rejestrowanych z uzyciem urzadzen pomiarowych zamon-
towanych na maszynach rolniczych, dronach czy satelitach
zagwarantuje precyzyjne zarzadzanie procesem produkcji
1 wezesne reagowanie na zagrozenia. Dalszy rozwoj uczenia
maszynowego w rolnictwie wymaga takze szerszej wspot-
pracy migdzy hodowcami, agronomami i specjalistami od
danych, aby tworzy¢ bazy danych i modele dostosowane
do potrzeb praktyki polowej. Standaryzacja procedur zbie-
rania danych, opracowanie platform analitycznych oraz
popularyzacja technologii wsrdd rolnikow beda kluczowe
dla efektywnego wdrozenia tych narz¢dzi w codziennej pro-
dukcji rzepaku.

Podsumowanie / Summary

Uczenie maszynowe odgrywa coraz wigksza role w produk-
cji rzepaku ozimego, wspierajac rozwoj nowoczesnych me-
tod hodowli, fenotypowania, diagnostyki choréb, progno-
zowania plondéw oraz optymalizacji praktyk agrotechnicz-
nych. Metody uczenia maszynowego pozwalaja na prze-
twarzanie i analize duzych zbioréw danych pochodzacych
z dronéw, satelitow, sensoré6w polowych i laboratoriow
analitycznych, co znaczaco przyspiesza procesy decyzyjne
i zwigksza doktadno$c¢ przewidywan. W hodowli i fenotypo-
waniu uczenie maszynowe umozliwia automatyczng iden-
tyfikacj¢ cech morfologicznych, liczenie roslin, segmen-
tacje kwiatostanow oraz selekcje najbardziej prognostycz-
nych cech, wspierajac wybor odmian o wysokim potencjale
plonotworczym i odporno$ciowym. W diagnostyce choréb
istreséw srodowiskowych algorytmy uczenia maszynowego
pozwalaja na wezesne wykrywanie infekcji, monitorowanie
uszkodzen spowodowanych susza czy mrozem oraz wspie-
rajg selekcje odmian odpornych na niekorzystne warunki.
W prognozowaniu plonow i ocenie jakosci nasion uczenie
maszynowe umozliwia tworzenie modeli predykcyjnych
z duza doktadnoscia, wykorzystujac dane rejestrowane
z poziomu pola, bezzalogowego statku powietrznego i sa-
telity. Modele te wspieraja planowanie produkcji oraz kon-
trolg jakosci nasion, co jest istotne zaréwno dla hodowcow,
jak i przemystu olejarskiego. W optymalizacji praktyk agro-
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technicznych uczenie maszynowe wspiera precyzyjne daw-
kowanie nawozow 1 wyznaczanie termindw zbioréw. Mimo
licznych sukcesow, pelne wykorzystanie uczenia maszyno-
wego w produkcji rzepaku napotyka na wyzwania zwigzane
z dostepnoscig i standaryzacja danych oraz interpretowal-
no$cig wynikow. Dodatkowo istotnym ograniczeniem jest
ryzyko nadmiernego dopasowania (overfitting), zwlaszcza
w przypadku niewielkich lub malo zr6znicowanych zbio-
réow danych, a takze brak pelnej walidacji krzyzowe;j. Prze-
noszenie modeli na inne warunki srodowiskowe, odmiany

nos$ci prognoz, co podkresla potrzebe ostroznej interpretacji
wynikoéw oraz dalszych badan nad generalizacjg modeli.
Wspoltpraca miedzy hodowcami, agronomami i specja-
listami od danych stwarza jednak ogromny potencjal dla
zwigkszenia efektywnosci, zrownowazenia produkcji i lep-
szego zarzadzania ryzykiem w uprawie rzepaku. Podsumo-
wujgc, uczenie maszynowe staje si¢ nicocenionym narze-
dziem wspierajacym rozwdj produkcji rzepaku, integrujac
dane z réznych zrodet, zwickszajac precyzj¢ decyzji oraz
umozliwiajac szybszy postep w hodowli i praktyce rolniczej.

ro$lin czy r6zne sezony moze prowadzi¢ do spadku doktad-
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