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Streszczenie
Rzepak (Brassica napus L.) jest jedną z najważniejszych roślin oleistych na świecie. Coraz większe znaczenie w jego produkcji zyskuje 
uczenie maszynowe, które umożliwia prognozowanie plonów, ocenę stanu roślin oraz wspomaganie decyzji agrotechnicznych. W pracy 
przedstawiono przegląd badań dotyczących wykorzystania różnych algorytmów – od klasycznych modeli, takich jak regresja liniowa, 
drzewa decyzyjne, las losowy czy maszyna wektorów nośnych, po bardziej zaawansowane, w tym sieci neuronowe. Omówiono zasto-
sowania danych z teledetekcji, obrazowania zarejestrowane z pokładu bezzałogowych statków powietrznych i satelitów oraz czujników 
naziemnych do monitorowania chorób, stresów środowiskowych i potrzeb nawozowych. Podkreślono potencjał uczenia maszynowego 
w zwiększaniu efektywności i zrównoważeniu produkcji rzepaku, a także wyzwania związane z jakością danych, złożonością modeli i ich 
interpretacją.

Słowa kluczowe: uczenie maszynowe, rzepak (Brassica napus L.), prognozowanie plonów, diagnostyka chorób roślin, rolnictwo 
precyzyjne

Abstract
Oilseed rape (Brassica napus L.) is one of the most important oil crops worldwide. Machine learning metchods are gaining increasing im-
portance in oilseed rape production, enabling yield prediction, crop condition assessment, and support for agronomic decision-making. 
This paper presents a review of studies on the use of various algorithms – from classical models such as linear regression, decision trees, 
random forest, and support vector machine to more advanced ones, including neural networks. Applications of remote sensing data, 
unnamed aerial vehicles and satellite imagery, as well as ground-based sensors for monitoring diseases, environmental stresses, and 
nutrient requirements are discussed. The potential of machine learning to enhance efficiency and sustainability in rapeseed production 
is highlighted, along with challenges related to data quality, model complexity, and interpretability.
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Wstęp / Introduction

Rzepak (Brassica napus L.) jest jedną z kluczowych roślin 
oleistych uprawianych w Europie i na świecie. Jest istot-
nym surowcem do produkcji oleju roślinnego, biopaliw 
oraz pasz dla zwierząt. Charakteryzuje się stałym trendem 
wzrostu produkcji i powierzchni uprawy. W roku 2023 
powierzchnia uprawy rzepaku na świecie wynosiła około 
43,5 miliona hektarów, a produkcja osiągnęła 91,9 milio-
na ton (FAOSTAT 2023). Wzrost zapotrzebowania na pro-
dukty pochodzące z rzepaku oraz zmieniające się warunki 
klimatyczne stawiają przed producentami nowe wyzwania 
związane z maksymalizacją plonów przy zachowaniu ja-
kości nasion i zrównoważonego wykorzystania zasobów. 
W tym kontekście rośnie zainteresowanie nowoczesnymi 
narzędziami analitycznymi, w tym metodami uczenia ma-
szynowego, które umożliwiają integrację i przetwarzanie 
dużych zbiorów danych rejestrowanych w warunkach labo-
ratoryjnych i polowych.

Uczenie maszynowe polega na tym, że algorytmy 
realizują określone zadania na podstawie danych wejścio-
wych bez konieczności wcześniejszego programowania 
reguł. Modele uczenia maszynowego można podzielić na 
dwa główne typy: nienadzorowane i nadzorowane. Mode-
le uczenia nienadzorowanego nie korzystają z etykietowa-
nych danych. Ich celem jest odkrywanie w danych ukrytych 
struktur, zależności lub grup. Algorytmy nienadzorowane 
przetwarzają dane w całości i samodzielnie identyfikują 
wzorce, takie jak grupowanie podobnych obserwacji (kla-
steryzacja) czy redukcja wymiarów, co pozwala lepiej zro-
zumieć charakter danych i znaleźć w nich ukryte informa-

cje. W przypadku modeli nadzorowanych proces uczenia 
polega na tym, że najpierw zbierane są dane etykietowane, 
które następnie dzieli się na zbiór treningowy i testowy. 
W procesie uczenia nadzorowanego etykiety pełnią dwie 
różne funkcje: podczas treningu są wykorzystywane do kie-
rowania uczeniem modelu, umożliwiając mu dopasowanie 
przewidywań do rzeczywistych wyników, natomiast w fa-
zie ewaluacji służą wyłącznie do oceny jakości predykcji, 
pozwalając zweryfikować, na ile model poprawnie prze-
widuje wyniki dla nowych danych. Model uczy się na da-
nych treningowych, dopasowując swoje parametry, aby jak 
najlepiej przewidywać wyniki. Po wytrenowaniu model 
jest gotowy do użycia, a jego skuteczność jest sprawdza-
na na danych testowych, oceniając, jak dobrze radzi sobie 
z nowymi, wcześniej niewidzianymi danymi. Na rysunku 
1. przedstawiono schemat działania uczenia maszynowego 
nienadzorowanego i nadzorowanego, a w tabeli 1. krótkie 
charakterystyki najbardziej popularnych algorytmów. 

Najważniejsze zalety algorytmów uczenia maszynowe-
go to: zastępowanie powtarzalnej i żmudnej pracy człowie-
ka oraz zdolność do odkrywania złożonych i subtelnych 
wzorców, niedostępnych dla przeciętnego obserwatora. 
Uczenie maszynowe znalazło z powodzeniem zastoso-
wanie w różnych dziedzinach od inżynierii kosmicznej, 
finansów i rozrywki, po biologię, medycynę i rolnictwo. 
W rolnictwie wykorzystywane jest w wielu obszarach, w tym 
w prognozowaniu plonów, wykrywaniu chorób i szkodni-
ków, fenotypowaniu odmian, a także w ocenie jakości na-
sion i optymalizacji praktyk agrotechnicznych. Integracja 
uczenia maszynowego z danymi pochodzącymi z dronów, 
satelitów, sensorów polowych oraz laboratoriów analitycz-

*podczas treningu, etykiety są wykorzystywane do nadzorowania uczenia modelu – during training, labels are used to guide the model’s learning
**w fazie ewaluacji etykiety służą wyłącznie do oceny jakości predykcji – in the evaluation phase, labels are used solely to assess the quality of 
predictions 

Rys. 1.	 Schemat działania uczenia maszynowego nienadzorowanego i nadzorowanego
Fig. 1. 	 Scheme of unsupervised and supervised machine learning
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nych pozwala nie tylko na automatyzację procesów, ale 
również na podejmowanie decyzji na poziomie precyzyjne-
go rolnictwa (Xie i Yang 2020).

Celem niniejszego artykułu jest przegląd aktualnych za-
stosowań metod uczenia maszynowego w produkcji rzepa-
ku oraz omówienie możliwości, jakie te technologie oferują 
w kontekście zwiększenia efektywności i zrównoważonego 
rozwoju upraw. Artykuł obejmuje zagadnienia związane 
z hodowlą i fenotypowaniem, diagnostyką chorób i stre-
sów środowiskowych, prognozowaniem plonów, oceną ja-
kości nasion oraz optymalizacją praktyk agrotechnicznych 
(tab. 2). Ponadto wskazane są wyzwania, ograniczenia oraz 
perspektywy dalszego rozwoju tej dziedziny. 

Przegląd literatury został przeprowadzony z wyko-
rzystaniem wyszukiwarki Google Scholar. Kryteriami 
doboru publikacji były: zakres czasowy obejmujący lata 
2017–2024, język publikacji (artykuły w języku angiel-
skim) oraz dostępność pełnego tekstu lub streszczenia 
umożliwiającego ocenę metod i wyników. Wyszukiwanie 
opierało się na kombinacjach słów kluczowych, takich jak: 
„machine learning” and „rapeseed”, „yield prediction” and 
„Brassica napus”, a także wariantach związanych z dia-
gnostyką chorób roślin i rolnictwem precyzyjnym. Proces 
selekcji obejmował wstępne przeglądanie tytułów i abstrak-
tów, a następnie pełnych tekstów artykułów spełniających 
kryteria tematyczne i jakościowe. Łącznie przeanalizowano 

Tabela 1.	Charakterystyki wybranych modeli uczenia maszynowego
Table 1. 	 Characteristics of selected machine learning models

Nazwa algorytmu 
Algorithm name

Opis algorytmu 
Algorithm description

Uczenie nienadzorowane – Unsupervised learning 

K-means

Popularny algorytm klastrowania dzielący dane na k klastrów na podstawie podobieństwa 
punktów. Wymaga podania liczby klastrów z góry.  
Zastosowanie: segmentacja klientów, analiza obrazów.
A popular clustering algorithm that divides data into k clusters based on the similarity of points. 
It requires specifying the number of clusters in advance.  
Applications: customer segmentation, image analysis.

HCA
(Hierarchical Cluster Analysis)

Służy do grupowania danych w hierarchiczną strukturę klastrów.  
Wynikiem jest dendrogram pokazujący podobieństwa między obiektami.  
Zastosowanie: biologia, analiza rynku.
It is used to group data into a hierarchical cluster structure.  
The result is a dendrogram showing the similarities between objects.  
Applications: biology, market analysis.

PCA  
(Principal Component Analysis)

Wykorzystywany jest do redukcji wymiarowości poprzez przekształcenie danych w nowe, 
niepowiązane zmienne. Zachowuje najważniejszą zmienność danych.  
Zastosowanie: wizualizacja danych, redukcja redundancji.
It is used for dimensionality reduction by transforming data into new, uncorrelated variables. 
It preserves the most important variability in the data.  
Applications: data visualization, redundancy reduction.

Uczenie nadzorowane – Supervised learning

RF  
(Random Forest)

Model zespołowy łączący wiele drzew decyzyjnych; klasa obiektu ustalana większością głosów. 
Zastosowanie: klasyfikacja obrazów, prognozowanie plonów.
Model combines multiple decision trees; the class of an object is determined by majority voting. 
Applications: image classification, crop yield prediction.

SVM  
(Support Vector Machine)

Tworzy granice między punktami danych w przestrzeni cech.  
Zastosowanie: rozpoznawanie obrazów, analiza tekstu.
It creates boundaries between data points in the feature space.  
Applications: image recognition, text analysis.

ELM  
(Extreme Learning Machine)

Szybka, jednokierunkowa sieć neuronowa do regresji i klasyfikacji w czasie rzeczywistym. 
Zastosowanie: rozpoznawanie obrazów.
A fast, feedforward neural network for real-time regression and classification.  
Applications: image recognition.

CNN  
(Convolutional Neural Network)

Głęboka sieć neuronowa z warstwami konwolucyjnymi, skuteczna w analizie danych 
przestrzennych i obrazów.  
Zastosowanie: rozpoznawanie obrazów, detekcja obiektów.
A deep neural network with convolutional layers, effective in analyzing spatial data and images. 
Applications: image recognition, object detection.
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Tabela 2.	Przykłady zastosowania metod uczenia maszynowego w badaniach nad rzepakiem
Table 2.  	Examples of the application of machine learning methods in rapeseed research

Literatura
References

Zastosowanie 
Application

Rodzaj danych 
Data type

Źródło danych 
Data source

Wybrany model 
Selected model

Metryki 
statystyczne 
Statistical 

metrics

Shahsavari  
i wsp. (2023)

plon nasion 
seed yield

liczba dni do dojrzałości 
fizjologicznej, liczba 
łuszczyn na roślinie, 

wysokość roślin
number of days to 

physiological maturity, 
number of pods per 
plant, plant height

laboratorium
laboratory

multilayer perceptron 
neural network (MPNN)

R2 = 0,84
RMSE = 0,283
MAE = 0,224

Xie i wsp.  
(2022)

dynamika kwitnienia
flowering dynamics

zobrazowania RGB
RGB imagery

bezzałogowy  
statek powietrzny

unmanned aerial vehicle

decision tree-based 
segmentation model 

(DTSM)

R2 = 0,97
RMSE = 0,051

Qadri i wsp. 
(2021)

klasyfikacja odmian 
rzepaku

rapeseed variety 
classification

zobrazowania RGB
RGB imagery

laboratorium
laboratory

artificial neural network 
(ANN)

dokładność 
– accuracy = 
0,95–0,98%

Konga i wsp. 
(2018)

identyfikacja zgnilizny 
twardzikowej
identification  

of Sclerotinia rot

zobrazowania 
hiperspektralne

hyperspectral imagery

laboratorium
laboratory

partial least squares-
discriminant analysis 

(PLS-DA)

dokładność – 
accuracy = 0,90; 

0,97; 1,00

Tang i wsp. 
(2023)

monitoring  
wilgotności gleby

soil moisture monitoring

pomiary hiperspektralne
hyperspectral 
measurements

pole doświadczalne
experimental field random forest (RF)

R2 = 0,94
RMSE = 0,005
MRE = 0,031

Zhang i wsp. 
(2023) 

monitoring zawartości 
wody w liściach

leaf water content 
monitoring

zobrazowania 
hiperspektralne

hyperspectral imagery

laboratorium
laboratory

convolutional neural 
network regression with 

attention mechanism 
and long short-term 

memory  
(CNN-ATT-LSTM-R)

R2 = 0,81 
RMSEP = 0,005

Xia i wsp.  
(2019)

stres zalania roślin
plant flooding stress

zobrazowania 
hiperspektralne

hyperspectral imagery

laboratorium
laboratory

quadratic discriminant 
analysis (QDA

dokładność – 
accuracy = 0,96

Li i wsp.  
(2022)

stres wymarzania
frost stress

zobrazowania RGB
RGB imagery

bezzałogowy  
statek powietrzny

unmanned aerial vehicle

convolutional neural 
network (CNN)

dokładność – 
accuracy = 0,93
F-score = 0,80

czułość – 
sensitivity = 

0,80

Zhou i wsp. 
(2023)

wykrywanie  
metali ciężkich

heavy metal detection

zobrazowania 
hiperspektralne

hyperspectral imagery

laboratorium
laboratory

transfer stacked auto-
encoder (T-SAE)

dokładność – 
accuracy = 0,99
R2 = 0,92–0,93

Hu i wsp.  
(2024)

predykcja plonu nasion
seed yield prediction

zobrazowania RGB  
i hiperspektralne

RGB and hyperspectral 
imagery

bezzałogowy 
 statek powietrzny

unmanned aerial vehicle

random forest 
regression (RFR)

R2 = 0,93
RRMSE = 0,059

Shi i wsp.  
(2024)

predykcja plonu nasion
seed yield prediction

zobrazowania 
multispectralne

multispectral imagery

bezzałogowy  
statek powietrzny

unmanned aerial vehicle

extreme gradient 
boosting regression 

(XGBR)

R2 = 0,58–0,77
RMSE = 

 0,005–0,011

Rajković i wsp. 
(2022)

predykcja plonu nasion
seed yield prediction

genotyp, rok
genotype, year

pole doświadczalne
experimental field

random forest 
regression (RFR)

R2 = 0,91
RMSE = 
227,082

Zhang i wsp. 
(2023)

indeks  
powierzchni liścia

leaf area index

pomiary hiperspektralne
hyperspectral 
measurements

pole doświadczalne
experimental field

random forest 
regression (RFR)

R2 = 0,81
RMSE = 0,455
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20 publikacji, koncentrując się na badaniach empirycznych 
istotnych dla zastosowania uczenia maszynowego w pro-
dukcji rzepaku.

Wykorzystanie uczenia maszynowego  
do optymalizacji hodowli i uprawy rzepaku / 
Application of machine learning  
for optimizing rapeseed breeding and cultivation

Hodowla odmian / Variety breeding
Hodowla rzepaku wymaga dokładnej oceny cech fenoty-
powych, takich jak: wysokość roślin, liczba i długość roz-
gałęzień, liczba kwiatostanów i łuszczyn czy masa tysiąca 
nasion. Tradycyjne metody pomiaru są czasochłonne i po-
datne na subiektywizm, co utrudnia szybki postęp w pro-
gramach hodowlanych (Li i wsp. 2022). W ostatnich latach 
rosnące możliwości pozyskiwania danych z dronów (UAV), 
zdjęć multispektralnych i hiperspektralnych, a także syste-
mów wysokoprzepustowego fenotypowania przyczyniają 
się do rozwoju nowoczesnych metod wspierających selek-
cję odmian. Uczenie maszynowe pozwala na automatycz-
ne przetwarzanie dużych zbiorów danych fenotypowych 
i efektywną selekcję cech w procesie hodowlanym, ukie-
runkowaną na wybór tych najsilniej związanych z plonem 
roślin. Takie badania prowadzili Shahsavari i wsp. (2023), 
którzy porównali skuteczność pięciu metod regresyjnych 

w prognozowaniu plonu nasion rzepaku z wykorzystaniem 
piętnastu cech morfologiczno-rozwojowych (wysokość ro-
śliny, liczba łuszczyn na pędzie głównym, liczba łuszczyn 
na pędach bocznych, liczba łuszczyn na roślinie, liczba 
pędów na roślinie, długość pędu głównego, wysokość osa-
dzenia pierwszej łuszczyny od powierzchni gleby, długość 
łuszczyny, liczba dni do początku kwitnienia, liczba dni 
do końca kwitnienia, liczba dni do fizjologicznej dojrza-
łości, okres kwitnienia, masa tysiąca nasion, liczba nasion 
w łuszczynie, średnica łodygi). Najwyższą dokładność 
prognozy uzyskano przy zastosowaniu modelu nu-support 
vector regression (NuSVR) (R2 = 0,86; RMSE = 0,266; 
MAE = 0,210), a najważniejszymi cechami istotnie wpły-
wającymi na plon nasion okazały się: liczba dni do dojrzało-
ści fizjologicznej, liczba łuszczyn na roślinie oraz wysokość 
roślin. Wymienione cechy uwzględniono przy opracowaniu 
modelu multilayer perceptron neural network (MLPNN), 
który charakteryzował się następującymi parametrami: 
R2 = 0,84; RMSE = 0,283; MAE = 0,224. Wyniki badań 
wykazały, że zastosowanie metod uczenia maszynowe-
go umożliwia dokładne przewidywanie plonu rzepaku na 
podstawie mniejszej liczby cech, a tym samym pomaga 
w optymalizacji i przyspieszeniu programów hodowlanych 
rzepaku. 

Z kolei Xie i wsp. (2022) zajmowali się oceną dynamiki 
kwitnienia różnych genotypów rzepaku z zastosowaniem 

Literatura
References

Zastosowanie 
Application

Rodzaj danych 
Data type

Źródło danych 
Data source

Wybrany model 
Selected model

Metryki 
statystyczne 
Statistical 

metrics

Wei i wsp. 
(2017) 

indeks  
powierzchni liścia

leaf area index

zobrazowania 
multispectralne

multispectral imagery

satelita
satellite

random forest 
regression (RFR)

R2 = 0,52
RMSE = 0,923

RRMSE = 0,937

Rajković i wsp. 
(2022)

predykcja masy  
1000 nasion,  

zawartości oleju i białka
prediction of thousand-
seed weight, oil content, 

and protein content

genotyp, rok
genotype, year

laboratorium
laboratory

random forest 
regression (RFR)

R2 = 0,89; 0,94; 
0,94

RMSE = 0,179; 
0,581, 0,501

Yu i wsp.  
(2018)

zawartość azotu  
w liściach

leaf nitrogen content

zobrazowania 
hiperspektralne

hyperspectral imagery

laboratorium
laboratory

fully-connected neural 
network (FNN)

R2 = 0,90
RMSEP = 0,003

Abdalla i wsp. 
(2020)

zawartość azotu, fosforu  
i potasu w roślinie

nitrogen, phosphorus, 
and potassium content 

in the plant

zobrazowania RGB
RGB imagery

pole doświadczalne
experimental field

long-short term memory 
(LSTM)

dokładność – 
accuracy = 0,95

Feng i wsp. 
(2024)

termin zbioru rzepaku
rapeseed harvest date

zobrazowania 
hiperspektralne  
nasion rzepaku

hyperspectral imagery  
of rapeseed seeds

laboratorium
laboratory

support vector machine 
(SVM)

dokładność – 
accuracy = 0,98

Tabela 2.	Przykłady zastosowania metod uczenia maszynowego w badaniach nad rzepakiem – cd.
Table 2.  	Examples of the application of machine learning methods in rapeseed research – continued
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zdjęć RGB rejestrowanych z pokładu bezzałogowego stat-
ku powietrznego. Autorzy wykazali, że dokładność wyod-
rębniania obszarów kwitnienia przy użyciu modelu decision 
tree-based segmentation model (DTSM) była wyższa niż 
przy zastosowaniu: naive Bayes (NB), k-nearest neighbours 
(KNN), random forest (RF) i support vector machine (SVM) 
dla wszystkich odmian i terminów kwitnienia, osiągając 
R2 = 0,97 i RMSE = 0,051. W badaniu wykazano zróż-
nicowanie dynamiki kwitnienia analizowanych odmian. 
Wszystkie odmiany zostały sklasyfikowane w cztery klastry 
na podstawie analizy skupień metodą k-średnich (k-means), 
które różniły się przede wszystkim terminem osiągnięcia peł-
ni kwitnienia oraz terminem rozpoczęcia kwitnienia. Wyniki 
tego badania mogą stanowić podstawę do prowadzenia ho-
dowli rzepaku opartej na analizie dynamiki kwitnienia.

Uczenie maszynowe znalazło również zastosowanie 
w klasyfikacji odmian rzepaku na podstawie zdjęć RGB 
(Qadri i wsp. 2021). Autorzy wykazali, że zastosowanie 
modelu artificial neural network (ANN) pozwalało skutecz-
nie rozróżniać osiem odmian rzepaku uzyskując bardzo wy-
soką dokładność na poziomie 0,95–0,98. 

Diagnostyka chorób i stresów środowiskowych / 
Diagnosis of diseases and environmental stresses
Choroby oraz stresy środowiskowe, takie jak susza, mróz 
czy niedobory składników odżywczych, znacząco ogra-
niczają plon i jakość nasion rzepaku. Tradycyjne metody 
diagnostyki, oparte na wizualnej ocenie pola lub laborato-
ryjnych testach, są czasochłonne i nie zawsze pozwalają na 
szybkie wykrycie zagrożeń. 

Przykładem ilustrującym efektywne wykorzystanie 
uczenia maszynowego do wykrywania chorób roślin są ba-
dania Konga i wsp. (2018), którzy zastosowali cztery mo-
dele dyskryminacyjne, w tym partial least squares-discrimi-
nant analysis (PLS-DA), support vector machine (SVM), 
soft independent modeling of class analogies (SIMCA) 
i k-nearest neighbors (KNN) do identyfikacji objawów 
zgnilizny twardzikowej na liściach rzepaku ozimego zare-
jestrowanych z wykorzystaniem kamery hiperspektralnej 
(ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland). 
Za pomocą wymienionych modeli autorzy analizowali 
zmienność jasności pikseli obrazu, odpowiadających ob-
szarom liści zdrowych oraz porażonych w różnym stopniu. 
Przeprowadzone na trzech niezależnych zestawach danych 
badania wykazały, że najefektywniejszym modelem był 
PLS-DA, którego dokładność wykrywania analizowanej 
choroby wynosiła w zależności od zestawu użytych danych 
0,90; 0,97 i 1. 

Uczenie maszynowe znalazło również zastosowanie 
w identyfikacji reakcji roślin na stresy abiotyczne. Tang 
i wsp. (2024) potwierdzili możliwość dokładnego monito-
rowania wilgotności gleby w strefie korzeniowej rzepaku 
ozimego przy użyciu danych hiperspektralnych zarejestro-
wanych z użyciem spektrometru polowego (ASD Field-

-Spec 3). Do estymacji wilgotności gleby zastosowano 
cztery modele: support vector machine (SVM), random 
forest (RF), back propagation neural network (BPNN) i ex-
treme learning machine (ELM). Najlepsze wyniki osiągnął 
model random forest (RF) dla głębokości gleby 0–20 cm, 
uzyskując wysoki współczynnik determinacji R2 = 0,94, 
niski błąd średniokwadratowy RMSE = 0,005 oraz średni 
względny błąd MRE = 0,031.

Oprócz badań poświęconych zawartości wody w glebie 
prowadzone były prace nad zawartością wody w liściach 
rzepaku. Przykładowo Zhang i wsp. (2023a) z wykorzy-
staniem zobrazowań zarejestrowanych za pomocą kamery 
hiperspektralnej FX17 (Spectral Imaging Ltd., Oulu, Fin-
land) ocenili przydatność do realizacji tego celu następują-
cych modeli: support vector regression (SVR), partial least, 
squares regression (PLSR), least absolute shrinkage i selec-
tion operator (LASSO), convolutional neural network regres-
sion with attention mechanism and long short-term memory 
(CNN-ATT-LSTM-R). Największą dokładność wykazał mo-
del CNN-ATT-LSTM-R. Współczynnik determinacji (R2) 
i błąd średniokwadratowy dla zbioru testowego (RMSEP) 
tego modelu wynosiły odpowiednio 0,81 i 0,005. 

Z kolei Xia i wsp. (2019) podjęli próbę identyfikacji 
stresu wynikającego z zalania roślin rzepaku. Do budo-
wy modeli klasyfikacyjnych porównujących spektra liści 
poddanych różnym poziomom zalania wodnego w trzech 
zbiorach danych zgromadzonych z użyciem kamery hiper-
spektralnej Pika XC, zastosowali Quadratic discriminant 
analysis (QDA), k-nearest neighbor (KNN) i support vector 
machine (SVM). Najlepszą dokładność klasyfikacji wyno-
szącą 0,96 uzyskano z zastosowaniem modelu QDA.

Ciekawe badania przedstawili Li i wsp. (2022), któ-
rzy zastosowali convolutional neural network (CNN) do 
rozpoznawania materiałów hodowlanych rzepaku odpor-
nych na przemarzanie, osiągając następujące wartości klu-
czowych parametrów statystycznych: dokładność = 0,93; 
F-score = 0,80 oraz czułość = 0,80. Badanie wykazało, że 
wykorzystanie zobrazowań RGB zarejestrowanych z pokła-
du bezzałogowego statku powietrznego (UAV) w połącze-
niu z głębokim uczeniem pozwala automatycznie i efektyw-
nie identyfikować materiały hodowlane odporne na mróz 
w dużych populacjach roślin, oferując ekonomiczną, wy-
godną i precyzyjną metodę wspierającą hodowców w selek-
cji i zarządzaniu materiałami roślinnymi.

Kolejnym zagadnieniem podejmowanym z zastosowa-
niem uczenia maszynowego w zakresie detekcji stresów 
środowiskowych są badania zawartości metali ciężkich 
w roślinach rzepaku. Zhou i wsp. (2023) opracowali model 
do przewidywania zawartości ołowiu (Pb) w roślinach rze-
paku, wykorzystujący obrazowanie hiperspektralne. Dane 
spektralne liści i korzeni rzepaku pozyskano przy różnych 
wartościach Pb. Opracowany model – transfer stacked au-
to-encoder (T-SAE) osiągnął 0,99 dokładności klasyfikacji 
gradientu stresu Pb, a współczynniki determinacji dla za-
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wagę modelu RFR (R2 = 0,91; RMSE = 227,082) nad ANN 
(R2 = 0,83; RMSE = 303,249). 

Oprócz prognozowania plonu, uczenie maszynowe zna-
lazło zastosowanie w szacowaniu indeksu powierzchni liści 
(LAI), kluczowego wskaźnika dla oceny wzrostu i rozwoju 
roślin uprawnych. Zhang i wsp. (2023b) na podstawie da-
nych zarejestrowanych z użyciem polowego spektrometru 
ASD sprawdzili przydatność do tego celu trzech algoryt-
mów uczenia maszynowego: back propagation neural ne-
twork (BPNN), support vector machine (SVM) i random 
forest (RF). Spośród testowanych algorytmów najwyższą 
dokładność estymacji indeksu LAI uzyskano dla modelu RF 
(R2 = 0,81; RMSE = 0,455), co potwierdza jego przydatność 
w monitorowaniu wzrostu rzepaku.

Z kolei Wei i wsp. (2017) podjęli się opracowania mo-
delu do szacowania LAI na podstawie zdjęć satelitarnych. 
Do mapowania LAI rzepaku ozimego wykorzystano ran-
dom forest regression (RFR) w ramach hybrydowej metody 
inwersji, łączącej optymalne wskaźniki roślinności (NDVI, 
MSR, ARVI) z odbiciem satelitarnym wysokiej rozdziel-
czości, co pozwoliło na przestrzenne odwzorowanie LAI na 
poziomie polowym. Zgodność estymowanych wartości LAI 
z pomiarami terenowymi wyniosła R2 = 0,52.

Zakres zastosowań uczenia maszynowego w badaniach 
nad rzepakiem obejmuje również ocenę jakości nasion. Do 
najważniejszych cech jakościowych nasion rzepaku należą 
zawartość tłuszczu i białka oraz profil kwasów tłuszczo-
wych, determinujący wartość odżywczą i technologiczną 
nasion. Rajković i wsp. (2022) wykazali, że wykorzysta-
nie algorytmu random forest regression (RFR) umożliwia 
skuteczną predykcję takich cech, jak masa 1000 nasion 
(R2 = 0,89; RMSE = 0,179), a także zawartość oleju 
(R2 = 0,94; RMSE = 0,581) i białka (R2 = 0,94; RMSE = 
0,501). Do opracowania modelu wykorzystano informacje 
o genotypie, odzwierciedlającym zmienność biologiczną 
oraz roku badań, odzwierciedlającym zmienność środowi-
skową.

Optymalizacja praktyk agrotechnicznych / Optimiza-
tion of agronomic practices
Optymalizacja praktyk agrotechnicznych jest kluczowa 
dla zwiększenia wydajności rzepaku, poprawy jakości na-
sion oraz ograniczenia negatywnego wpływu na środowi-
sko. Tradycyjne podejścia oparte na doświadczeniu rolni-
ków lub ogólnych zaleceniach agronomicznych nie zawsze 
uwzględniają zmienność warunków lokalnych, co może 
prowadzić do suboptymalnych wyników. Metody uczenia 
maszynowego pozwalają na tworzenie modeli wspomagają-
cych decyzje dotyczące nawożenia oraz terminów zbiorów. 

Yu i wsp. (2018) potwierdzili możliwość szybkiego 
i nieinwazyjnego oznaczania zawartości azotu w liściach 
rzepaku przy użyciu metod uczenia maszynowego połą-
czonych z technikami obrazowania hiperspektralnego. Spo-
śród testowanych modeli (PLS – partial least square, SVM 

wartości Pb w liściach i korzeniach wyniosły odpowiednio 
0,92 i 0,93. 

Prognozowanie plonów oraz parametrów liści i nasion / 
Prediction of yields, as well as leaf and seed traits
Prognozowanie plonów jest kluczowe zarówno dla plano-
wania produkcji, jak i zarządzania ryzykiem w rolnictwie. 
Tradycyjne metody oparte na analizie danych historycz-
nych, obserwacjach polowych oraz modelach empirycz-
nych, są czasochłonne i podatne na błędy. Uczenie maszy-
nowe umożliwia wykorzystanie dużych zbiorów danych 
pochodzących z dronów, satelitów, sensorów polowych 
oraz laboratoriów analitycznych do tworzenia precyzyjnych 
modeli predykcyjnych (Omia i wsp. 2023). 

Przykładem ilustrującym zastosowanie dronów są ba-
dania Hu i wsp. (2024), którzy analizowali zdjęcia RGB 
i hiperspektralne rzepaku w fazie siewki, pąkowania, kwit-
nienia oraz tworzenia łuszczyn. Z obrazów hiperspektral-
nych wyodrębniono i obliczono reflektancję pokrywy ro-
ślinnej oraz wskaźniki spektralne. Po przeprowadzeniu 
analizy korelacji i analizy głównych składowych z zasto-
sowaniem modelu principal component analysis (PCA) 
wybrano wskaźniki spektralne, które posłużyły do budowy 
modeli predykcji plonów przy użyciu random forest regres-
sion (RF), multiple linear regression (MLR) i support vector 
machine regression (SVM). Wyniki wykazały, że podejścia 
oparte na uczeniu maszynowym, mogą poprawić dokład-
ność predykcji plonów w porównaniu z metodami tradycyj-
nymi, takimi jak regresja wielokrotna. Model oparty na RF 
uzyskał najwyższy współczynnik determinacji (R2 = 0,93) 
oraz najniższy względny błąd pierwiastkowy średniokwa-
dratowy (RRMSE = 0,059). Natomiast model regresji wie-
lokrotnej osiągnął R2 = 0,73 oraz RRMSE = 0,113. Ponadto, 
stwierdzono że etap pąkowania był najlepszy do progno-
zowania plonów rzepaku w porównaniu z innymi fazami 
wzrostu. 

Z kolei Shi i wsp. (2024) w prognozowaniu plonu rze-
paku na podstawie zobrazowań multispektralnych zareje-
strowanych z pokładu bezzałogowego statku powietrznego, 
oprócz tradycyjnej regresji liniowej, zastosowali trzy mode-
le uczenia maszynowego: random forest regression (RFR), 
support vector regression (SVR) oraz extreme gradient bo-
osting regression (XGBR). Autorzy wykazali, że wszystkie 
trzy algorytmy przewyższają regresję liniową pod wzglę-
dem dokładności prognoz, a najdokładniejszym modelem 
okazał się XGBR.

Przykładem zastosowania uczenia maszynowego do 
prognozowania plonu nasion rzepaku są również badania 
Rajkovića i wsp. (2022). Na podstawie informacji o ge-
notypie, odzwierciedlającym zmienność biologiczną oraz 
roku badań, odzwierciedlającym zmienność środowiskową, 
opracowali oni dwa algorytmy uczenia maszynowego: ar-
tificial neural networks (ANN) i random forest regression 
(RFR). Na podstawie uzyskanych wyników wykazali prze-
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– support vector machine, FNN – fully-connected neural 
network) najwyższą skutecznością charakteryzował się mo-
del FNN, dla którego wartości R2 wyniosły 0,90; a RMSEP 
0,003.

Większy zakres badań obejmujący oprócz azotu również 
szacowanie zawartości fosforu i potasu zaproponowali Ab-
dalla i wsp. (2020), którzy z zastosowaniem modelu long-
-short term memory (LSTM), przeprowadzili klasyfikację 
stanu odżywienia rzepaku na podstawie sekwencji zobra-
zowań RGB. Opracowana metoda pozwala z dokładno-
ścią równą 0,95 na automatyczną ocenę stanu odżywienia 
w całym cyklu życia roślin i ma potencjał w zastosowaniach 
rolnictwa precyzyjnego.

Przykładem badań ukierunkowanych na ustalenie opty-
malnego terminu zbioru rzepaku prowadzonych z wyko-
rzystaniem metod uczenia maszynowego jest praca Fenga 
i wsp. (2024), którzy zastosowali kilka algorytmów uczenia 
maszynowego [extreme learning machine (ELM), k-nearest 
neighbor (KNN), random forest (RF), partial least-squares 
discriminant analysis (PLSDA), support vector machine 
(SVM)] w połączeniu z obrazowaniem hiperspektralnym 
nasion rzepaku. Najlepszy wynik uzyskano z zastosowa-
niem modelu SVM, osiągając dokładność 0,98. Wyniki po-
kazują, że dojrzałość rzepaku może być szybko i nieinwa-
zyjnie oceniana za pomocą obrazowania hiperspektralnego, 
co ułatwia wybór optymalnego terminu zbioru.

Wyzwania i perspektywy rozwoju / Challenges and 
development prospects
Pomimo rosnącego zainteresowania uczeniem maszyno-
wym w produkcji rzepaku ozimego oraz licznych sukcesów, 
nadal istnieje wiele wyzwań, które ograniczają pełne wyko-
rzystanie tych technologii. Jednym z głównych problemów 
jest zbieranie i jakość danych, ponieważ dane rolnicze są 
często heterogeniczne, niestrukturalne i niekompletne, co 
utrudnia ich gromadzenie i analizę, a dodatkowo na ich 
wiarygodność wpływają takie czynniki, jak warunki po-
godowe, obecność szkodników czy występowanie chorób. 
Kolejną trudnością jest brak standaryzacji, gdyż rolnictwo 
charakteryzuje się dużym zróżnicowaniem upraw, rodza-
jów gleb i systemów gospodarowania, co utrudnia ujedno-
licenie procesów zbierania danych i tym samym ogranicza 
możliwość tworzenia dokładnych i skalowalnych modeli 
uczenia maszynowego. Istotnym wyzwaniem pozostaje 
również ograniczona dostępność danych treningowych, 
niezbędnych do prawidłowego działania algorytmów, które 
wymagają dużych zbiorów informacji, a w rolnictwie często 
ich brakuje. Dodatkową barierę stanowi integracja uczenia 
maszynowego z istniejącymi praktykami rolniczymi, ponie-
waż wielu rolników nie zna zasad jego działania lub nie po-
siada odpowiednich narzędzi i zasobów, aby skutecznie je 
wdrożyć. Ważnym ograniczeniem jest także infrastruktura, 
gdyż algorytmy uczenia maszynowego wymagają znacznej 
mocy obliczeniowej i dużej pojemności magazynowania 

danych, co bywa problematyczne w regionach o słabo roz-
winiętej infrastrukturze, typowych dla obszarów wiejskich. 
Nie bez znaczenia są również koszty, ponieważ wdrażanie 
rozwiązań opartych na uczeniu maszynowym w rolnictwie 
jest kosztowne, a zwrot z inwestycji często nie jest natych-
miastowy ani oczywisty, co szczególnie utrudnia korzysta-
nie z tych technologii małym gospodarstwom i lokalnym 
społecznościom.

Perspektywy rozwoju uczenia maszynowego w pro-
dukcji rzepaku są jednak obiecujące. Integracja uczenia 
maszynowego z sensorami polowymi oraz systemami sa-
telitarnymi pozwala na tworzenie modeli predykcyjnych 
działających w czasie rzeczywistym. Połączenie danych 
rejestrowanych z użyciem urządzeń pomiarowych zamon-
towanych na maszynach rolniczych, dronach czy satelitach 
zagwarantuje precyzyjne zarządzanie procesem produkcji 
i wczesne reagowanie na zagrożenia. Dalszy rozwój uczenia 
maszynowego w rolnictwie wymaga także szerszej współ-
pracy między hodowcami, agronomami i specjalistami od 
danych, aby tworzyć bazy danych i modele dostosowane 
do potrzeb praktyki polowej. Standaryzacja procedur zbie-
rania danych, opracowanie platform analitycznych oraz 
popularyzacja technologii wśród rolników będą kluczowe 
dla efektywnego wdrożenia tych narzędzi w codziennej pro-
dukcji rzepaku.

Podsumowanie / Summary

Uczenie maszynowe odgrywa coraz większą rolę w produk-
cji rzepaku ozimego, wspierając rozwój nowoczesnych me-
tod hodowli, fenotypowania, diagnostyki chorób, progno-
zowania plonów oraz optymalizacji praktyk agrotechnicz-
nych. Metody uczenia maszynowego pozwalają na prze-
twarzanie i analizę dużych zbiorów danych pochodzących 
z dronów, satelitów, sensorów polowych i laboratoriów 
analitycznych, co znacząco przyspiesza procesy decyzyjne 
i zwiększa dokładność przewidywań. W hodowli i fenotypo-
waniu uczenie maszynowe umożliwia automatyczną iden-
tyfikację cech morfologicznych, liczenie roślin, segmen-
tację kwiatostanów oraz selekcję najbardziej prognostycz-
nych cech, wspierając wybór odmian o wysokim potencjale 
plonotwórczym i odpornościowym. W diagnostyce chorób 
i stresów środowiskowych algorytmy uczenia maszynowego 
pozwalają na wczesne wykrywanie infekcji, monitorowanie 
uszkodzeń spowodowanych suszą czy mrozem oraz wspie-
rają selekcję odmian odpornych na niekorzystne warunki. 
W prognozowaniu plonów i ocenie jakości nasion uczenie 
maszynowe umożliwia tworzenie modeli predykcyjnych 
z dużą dokładnością, wykorzystując dane rejestrowane 
z poziomu pola, bezzałogowego statku powietrznego i sa-
telity. Modele te wspierają planowanie produkcji oraz kon-
trolę jakości nasion, co jest istotne zarówno dla hodowców, 
jak i przemysłu olejarskiego. W optymalizacji praktyk agro-
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technicznych uczenie maszynowe wspiera precyzyjne daw-
kowanie nawozów i wyznaczanie terminów zbiorów. Mimo 
licznych sukcesów, pełne wykorzystanie uczenia maszyno-
wego w produkcji rzepaku napotyka na wyzwania związane 
z dostępnością i standaryzacją danych oraz interpretowal-
nością wyników. Dodatkowo istotnym ograniczeniem jest 
ryzyko nadmiernego dopasowania (overfitting), zwłaszcza 
w przypadku niewielkich lub mało zróżnicowanych zbio-
rów danych, a także brak pełnej walidacji krzyżowej. Prze-
noszenie modeli na inne warunki środowiskowe, odmiany 
roślin czy różne sezony może prowadzić do spadku dokład-
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ności prognoz, co podkreśla potrzebę ostrożnej interpretacji 
wyników oraz dalszych badań nad generalizacją modeli.

Współpraca między hodowcami, agronomami i specja-
listami od danych stwarza jednak ogromny potencjał dla 
zwiększenia efektywności, zrównoważenia produkcji i lep-
szego zarządzania ryzykiem w uprawie rzepaku. Podsumo-
wując, uczenie maszynowe staje się nieocenionym narzę-
dziem wspierającym rozwój produkcji rzepaku, integrując 
dane z różnych źródeł, zwiększając precyzję decyzji oraz 
umożliwiając szybszy postęp w hodowli i praktyce rolniczej.


