Postępy w hodowli odpornościowej jabłoni na zarazę ogniową
Progress in apple breeding for resistance to fire blight
Sylwia Keller-Przybyłkowicz, e-mail: sylwia.keller@inhort.pl
Instytut Ogrodnictwa – Państwowy Instytut Badawczy, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, PolskaMariusz Lewandowski, e-mail: mariusz.lewandowski@inhort.pl
Instytut Ogrodnictwa – Państwowy Instytut Badawczy, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, PolskaPiotr Sobiczewski, e-mail: piotr.sobiczewski@inhort.pl
Instytut Ogrodnictwa – Państwowy Instytut Badawczy, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, PolskaAbstract |
W pracy przedstawiono najważniejsze zagadnienia dotyczące hodowli odpornościowej jabłoni na zarazę ogniową stwarzającej ogromne możliwości zwiększenia efektywności produkcji jabłek bez użycia innych metod ochrony, w tym metody chemicznej. Fenotypową ocenę podatności genotypów jabłoni na chorobę prowadzi się w oparciu o obserwacje występowania objawów w warunkach polowych i/lub obiektach zamkniętych np. w szklarni. Narzędziem przyspieszającym proces hodowli są metody biologii molekularnej, w tym identyfikacja markerów odporności oraz biotechnologia. W programach hodowlanych prowadzonych w różnych ośrodkach na świecie wykorzystuje się dzikie gatunki rodzaju Malus oraz uprawiane odmiany jabłoni. Wyhodowano już podkładki jabłoni z bardzo wysoką odpornością na zarazę ogniową (USA) oraz szereg odmian parchoodpornych wykazujących również wysoką odporność na chorobę (Niemcy, Szwajcaria). W Polsce w ostatnich latach wyhodowano dwa genotypy jabłoni, odmianę Early Szampion i klon nr 69 (J-2003-05), charakteryzujące się bardzo wysoką odpornością oraz wytwarzające atrakcyjne i smaczne owoce. Oba genotypy mają perspektywę wykorzystania w programach hodowlanych i nasadzeniach produkcyjnych.
The paper presents the most important issues concerning the breeding of apple trees resistant to fire blight, which creates great opportunities to increase the efficiency of apple fruit production without the use of other protection methods, including the chemical treatment. The phenotypic assessment of susceptibility of apple genotypes to the disease is based on observations on the occurrence of symptoms in field and/or closed facilities, e.g. in the greenhouse. Molecular biology methods, including identification of resistance markers, and biotechnology are valuable tools to accelerate the breeding process. Breeding programs conducted in various research centers around the world use wild species of the genus Malus and commercial cultivars of apple. Apple rootstocks with very high resistance to fire blight (USA) and a number of scab-resistant cultivars, also showing high resistance to the disease (Germany, Switzerland) have already been bred. In recent years cultivar Early Szampion and clone No. 69 (J-2003-05) have been bred in Poland. Both genotypes are characterized by a very high resistance, and produce attractive tasty fruit. They have the prospect of being used in breeding programs and commercial plantings. |
Key words |
Erwinia amylovora; ocena fenotypowa; źródła odporności; molekularne markery odporności; biotechnologia; phenotypic evaluation; resistance sources; molecular markers; biotechnology |
References |
Aćimović S.G., Zeng Q., McGhee G.C., Sundin G.W., Wise J.C. 2015. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Frontiers in Plant Science 6: 16. DOI: 10.3389/fpls.2015.00016
Aldwinckle H.S., Gustafson H.L., Forsline P.L. 1999. Evaluation of the core subset of the USDA apple germplasm collection for resistance to fire blight. Acta Horticulturae 489: 269–272. DOI: 10.17660/ActaHortic.1999.489.46
Aldwinckle H., Norelli J., Brown S., Borejsza-Wysocka E., Gustafson H., Reynoird J.-P., Reddy M.V.B. 2000. Genetic engineering of apple for resistance to fire blight. New York Fruit Quaterly 8 (1): 17–19.
Baldo A., Norelli J.L., Farrell Jr R.E., Bassett C.L., Aldwinckle H.S., Malnoy M. 2010. Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biology 10: 1. DOI: 10.1186/1471-2229-10-1
Baumgartner I.O., Leumann L.R., Frey J.E., Joos M., Voegele R.T., Kellerhals M. 2012. Breeding apples to withstand infection pressure by fire blight and other diseases. s. 14–21. W: Proceedings of the 15th International Conference on Organic Fruit- Growing. Hohenheim, Germany, 20–22 February 2012, 427 ss.
Bonasera J.M., Kim J.F., Beer S.V. 2006. PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology 6: 23. DOI: 10.1186/1471-2229-6-23
Borejsza-Wysocka E.E., Malnoy M., Meng X., Bonasera J.M., Nissinen R.M., Kim J.F., Beer S.V., Aldwinckle H.S. 2004. Silencing of apple proteins that interact with DspE, a pathogenicity effector from Erwinia amylovora, as a strategy to increase resistance to fire blight. Acta Horticulturae 663: 469–474. DOI: 10.17660/ActaHortic.2004.663.81
Borejsza-Wysocka E.E., Malnoy M., Norelli J.L., Beer S.V., He S.H. 2007. Strategies for obtaining fire blight resistance in apple by rDNA technology. Acta Horticulturae 738: 283–285. DOI: 10.17660/ActaHortic.2007.738.30
Broggini G.A.L., Wöhner T., Fahrentrapp J., Kost T.D., Flachowsky H., Peil A., Hanke M.-V., Richter K., Patocchi A., Gessler C. 2014. Engineering fire blight resistance into the apple cultivar ‘Gala’ using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotechnology Journal 12 (6): 728–733. DOI: 10.1111/pbi.12177
Calenge F., Drouet D., Denancé C., van de Weg W.E., Brisset M.-N., Paulin J.-P., Durel C.-E. 2005. Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theoretical and Applied Genetics 111: 128–135. DOI: 10.1007/s00122-005-2002-z
Chen K., Wang Y., Zhang R., Zhang H., Gao C. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70: 667–697. DOI: 10.1146/annurev-arplant-050718-100049
Cummins J.N., Aldwinckle H.S. 1983. Breeding apple rootstocks. Chapter 10. s. 294–394. DOI: 10.1002/9781118060988. ch10. W: Plant Breeding Reviews. Volume 1 (J. Janick, red.). Wiley, 411 ss. Print ISBN 9781118064399. Online ISBN 9781118060988. DOI: 10.1002/9781118060988
Desnoues E., Norelli J.L., Aldwinckle H.S., Wisniewski M.E., Evans K.M., Malnoy M., Khan A. 2018. Identification of novel strain-specific and environment-dependent minor QTLs linked to fire blight resistance in apples. Plant Molecular Biology Reporter 36: 247–256. DOI: 10.1007/s11105-018-1076-0
Dougherty L., Wallis A., Cox K., Zhong G.-Y., Gutierrez B. 2021. Phenotypic evaluation of fire blight outbreak in the USDA Malus collection. Agronomy 11 (1): 144. DOI: 10.3390/agronomy11010144
Durel C.-E., Denancé C., Brisset M.-N. 2009. Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes ‘Evereste’ and Malus floribunda clone 821. Genome 52 (2): 139–147. DOI: 10.1139/G08-111
Emeriewen O.F., Malnoy M., Richter K., Kilian A., Hanke M.-V., Peil A. 2013. Evidence of a major QTL for fire blight resistance in the apple wild species Malus fusca. Acta Horticulturae 1056: 289–293. DOI: 10.17660/ActaHortic.2014.1056.49
Emeriewen O.F., Richter K., Berner T., Keilwagen J., Schnable P.S., Malnoy M., Peil A. 2020. Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Scientific Reports 10 (1): 16358. DOI: 10.1038/s41598-020-73393-6
Emeriewen O.F., Richter K., Flachowsky H., Malnoy M., Peil A. 2021. Genetic analysis and fine mapping of the fire blight resistance locus of Malus × arnoldiana on linkage group 12 reveal first candidate genes. Frontiers in Plant Science 12: 667133. DOI: 10.3389/fpls.2021.667133
Emeriewen O.F., Richter K., Kilian A., Zini E., Hanke M.-V., Malnoy M., Peil A. 2014. Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Molecular Breeding 34: 407–419. DOI: 10.1007/ s11032-014-0043-1
Emeriewen O.F., Wöhener T., Flachowsky H., Peil A. 2019. Malus hosts – Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Frontiers in Plant Science 10: 551. DOI: 10.3389/fpls.2019.00551
EPPO data base 2020. https://gd.eppo.int/taxon/ERWIAM/datasheet [last updated: 22.04.2020].
Evans K.M., Patocchi A., Rezzonico F.F., Mathis F., Durel C.E., Fernández-Fernández F., Boudichevskaia A., Dunemann F., Stankiewicz-Kosyl M., Gianfranceschi L., Komjanc M., Lateur M., Madduri M., Noordijk Y., van de Weg W.E. 2011. Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Molecular Breeding 28: 535–547. DOI: 10.1007/s11032-010-9502-5
Fahrentrapp J., Broggini G.A.L., Kellerhals M., Peil A., Richter K., Zini E., Gessler C. 2012. A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genetics and Genomes 9: 237–251. DOI: 10.1007/s11295- 012-0550-3
Fazio G., Aldwinckle H.S., Volk G.M., Richards C.M., Janisiewicz W.J., Forsline P.L. 2009. Progress in evaluating Malus sieversii for disease resistance and horticultural traits. Acta Horticulturae 814: 59–66. DOI: 10.17660/ActaHortic2009.814.2
Fischer C., Richter K. 2004. Fire blight resistance apple cultivars produced by conventional breeding. Acta Horticulturae 663: 721–724. DOI: 10.17660/ActaHortic.2004.663.129
Forsline P.L., Aldwinckle H.S. 2002. Natural occurrence of fire blight in USDA apple germplasm collection after 10 years of observation. Acta Horticulturae 590: 351–357. DOI: 10.17660/ActaHortic.2002.590.52
Gardiner S.E., Norelli J.L., Silva N.D., Fazio G., Peil A., Malnoy M., Horner M., Bowatte D., Carlisle C., Wiedow C., Wan Y., Bassett C.L., Baldo A.M., Celton J.-M., Richter K., Aldwinckle H.S., Bus V.G.M. 2012. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions. BMC Genetics 13: 25. DOI: 10.1186/1471-2156-13-25
Gessler C., Patocchi A. 2007. Recombinant DNA Technology in Apple. s. 113–132. W: Green Gene Technology. Advanced Biochemical Engineering/Biotechnology, Vol. 107 (A. Fiechter, C. Sautter, red.). Springer, Berlin, Heidelberg. Print ISBN 978-3- 540-71321-0. Online ISBN 978-3-540-71323-4. DOI: 10.1007/10_2007_053
Harshman J.M., Evans K.M., Allen H., Potts R., Flamenco J., Aldwinckle H.S., Wisniewski M.E., Norelli J.L. 2017. Fire blight resistance in wild accessions of Malus sieversii. Plant Disease 101 (10): 1738–1745. DOI: 10.1094/PDIS-01-17-0077-RE
Jensen P.J., Halbrendt N., Fazio G., Makalowska I., Altman N., Praul C., Maximova S.N., Ngugi H.K., Crassweller R.M., Travis J.W., McNellis T.W. 2012. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics 13: 9. DOI: 10.1186/1471-2164-13-9
Jensen P.J., Rytter J., Detwiler E.A., Travis J.W., McNellis T.W. 2003. Rootstock effects on gene expression patterns in apple tree scions. Plant Molecular Biology 53: 493–511. DOI: 10.1023/B:PLAN.0000019122.90956.3b
Kása K., Hevesi M., Tóth M.G. 2004. Evaluation of traditional Hungarian apple cultivars as sources of resistance to fire blight. Acta Horticulture 663: 225–228. DOI: 10.17660/ActaHortic.2004.663.35
Keller-Przybyłkowicz S., Lewandowski M., Korbin M. 2009. Molecular screening of apple (Malus domestica) cultivars and breeding clones for their resistance to fire blight. [Ocena przydatności wybranych markerów molekularnych QTL do szybkiej oceny odmian i klonów hodowlanych jabłoni (Malus domestica) jako donorów odporności na zarazę ogniową w programach hodowli]. Journal of Fruit and Ornamental Plant Reasearch 17 (2): 31–43.
Kellerhals M., Baumgartner I.O., Leumann L., Frey J.E., Patocchi A. 2013. Progress in pyramiding disease resistances in apple breeding. Acta Horticulturae 976: 487–491. DOI: 10.17660/ActaHortic.2013.976.68
Kellerhals M., Baumgartner I.O., Leumann L., Lussi L., Schütz S., Patocchi A. 2014. Breeding high quality apples with fire blight resistance. Acta Horticulturae 1056: 225–230. DOI: 10.17660/ActaHortic.2014.1056.36
Kellerhals M., Franck L., Baumgartner I.O., Patocchi A., Frey J.E. 2011. Breeding for fire blight resistance in apple. Acta Horticulturae 896: 385–389. DOI: 10.17660/ActaHortic.2011.896.55
Kellerhals M., Schütz S., Patocchi A. 2017. Breeding for host resistance to fire blight. Journal of Plant Pathology 99 (Special issue): 37–43.
Kellerhals M., Szalatnay D., Hunziker K., Duffy B., Nybom H., Ahmadi-Afzadi M., Höfer M., Richter K., Lateur M. 2012. European pome fruit genetic resources evaluated for disease resistance. Trees 26: 179–189. DOI: 10.1007/s00468-011-0660-9
Khan A., Desnoues E., Clark M. 2018. Bacterial strain affects cultivar response to fire blight in apples. Fruit Quarterly 26 (2): 15–20.
Khan M.A., Duffy B., Gessler C., Patocchi A. 2006. QTL mapping of fire blight resistance in apple. Molecular Breeding 17: 299–306. DOI: 10.1007/s11032-006-9000-y
Khan M.A., Durel C.E., Duffy B., Drouet D., Kellerhals M., Gessler C., Patocchi A. 2007. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50 (6): 568–577. DOI: 10.1139/g07-033
Khan M.A., Zhao Y., Korban S.S. 2012. Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Molecular Biology Reporter 30: 247–260. DOI: 10.1007/ s11105-011-0334-1
Khan M.A., Zhao Y., Korban S.S. 2013. Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping. Physiologia Plantarum 148 (3): 344–353. DOI: 10.1111/ppl.12068
Kost T.D., Gessler C., Jänsch M., Flachowsky H., Patocchi A., Broggini G.A.L. 2015. Development of the first cisgenic apple with increased resistance to fire blight. PLOS ONE 10 (12): e0143980. DOI: 10.1371/journal.pone.0143980
Kostick S.A., Norelli J.L., Evans K.M. 2019. Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathology 68 (5): 985–996. DOI: 10.1111/ppa.13012
Kostick S.A., Teh S.L., Norelli J.L., Vanderzande S., Peace C., Evans K.M. 2021. Fire blight QTL analysis in a multi-family apple population identifies a reduced-susceptibility allele in ‘Honeycrisp’. Horticulture Research 8: 28. DOI: 10.1038/s41438-021- 00466-6
Lamichhane J.R., Osdaghi E., Behlau F., Köhl J., Jones J.B., Aubertot J.-N. 2018. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development 38: 28. DOI: 10.1007/s13593-018-0503-9
Le Lezec M., Lecomte P., Laurens F., Michelesi J.C. 1997. Sensibilite varietate au feu bacterien (1re partie). L’Arboriculture Fruitiere 503: 57–62.
Le Lezec M., Paulin J.P., Lecomte P. 1987. Shoot and blossom susceptibility to fire blight of apple cultivars. Acta Horticulture 217: 311–315. DOI: 10.17660/ActaHortic.1987.217.54
Lee S.A., Ngugi H.K., Halbrendt N.O., O’Keefe G., Lehman B., Travis J.W., Sinn J.P., McNellis T.W. 2010. Virulence characteristics accounting for fire blight disease severity in apple trees and seedlings. Phytopathology 100 (6): 539–550. DOI: 10.1094/ PHYTO-100-6-0539
Lespinasse Y., Aldwinckle H.S. 2000. Breeding for resistance to fire blight. s. 253–273. W: Fire Blight. The Disease and its Causative Agent, Erwinia amylovora (J.L. Vanneste, red.). CABI Publishing, CAB International, Wallingford, UK, 370 ss. ISBN 0-85199-294-3.
Luby J.J., Alspach P.A., Bus V.G.M., Oraguzie N.C. 2002. Field resistance to fire blight in a diverse apple (Malus sp.) germplasm collection. Journal of American Society for Horticultural Science 127 (2): 245–253. DOI: 10.21273/jashs.127.2.245
Luby J., Forsline P., Aldwinckle H., Bus V., Geibel M. 2000. Silk road apples–collection, evaluation, and utilization of Malus sieversii from Central Asia. HortScience 36 (2): 225–231. DOI: 10.21273/HORTSCI.36.2.225
Malnoy M., Martens S., Norelli J.L., Barny M.-A., Sundin G.W., Smits T.H.M., Duffy B. 2012. Fire blight: applied genomic insights of the pathogen and host. Annual Review of Phytopathology 50 (1): 475–494. DOI: 10.1146/annurev-phyto-081211-172931
McGrath M.J., Koczan J.M., Kennelly M.M., Sundin G.W. 2009. Evidence that prohexadione-calcium induces structural resistance to fire blight infection. Phytopathology 99 (5): 591–596. DOI: 10.1094/PHYTO-99-5-0591
Mohan S.K., Fallahi E., Bijman V.P. 2002. Evaluation of apple varieties for susceptibility to Erwinia amylovora by artificial inoculation under field conditions. Acta Horticulturae 590: 373–375. DOI: 10.17660/ActaHortic.2002.590.56
Nishitani C., Hirai N., Komori S., Wada M., Okada K., Osakabe K., Yamamoto T., Osakabe Y. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6: 31481. DOI: 10.1038/srep31481
Norelli J.L., Aldwinckle H.S., Beer S.V. 1984. Differential host × pathogen interactions among cultivars of apple and strains of Erwinia amylovora. Phythopathology 74 (2): 136–139.
Norelli J.L., Aldwinckle H.S., Destéfano-Beltrán L., Jaynes J.M. 1994. Transgenic ‘Mailing 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77: 123–128. DOI: 10.1007/BF02551474
Norelli J.L., Aldwinckle H.S., Holleran H.T., Robinson T.L., Johnson W.C. 2002. Resistance of ‘Geneva’ apple rootstocks to Erwinia amylovora when grown as potted plants and orchard trees. Acta Horticulturae 590: 359–362. DOI: 10.17660/ActaHortic.2002.590.53
Norelli J.L., Farrell Jr. R.E., Bassett C.L., Baldo A.M., Lalli D.A., Aldwinckle H.S., Wisniewski M.E. 2009. Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics and Genomes 5: 27–40. DOI: 10.1007/s11295-008-0164-y
Norelli J.L., Jones A.L., Aldwinckle H.S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Disease 87 (7): 756–765. DOI: 10.1094/PDIS.2003.87.7.756
Paulin J.P., Lespinasse Y. 1990. Pathogenicity of strains of Erwinia amylovora to some apple cultivars in the greenhouse. Acta Horticulturae 273: 319–326.
Peil A., Bus V.G.M., Geider K., Richter K., Flachowsky H., Hanke M.-V. 2009. Improvement of fire blight resistance in apple and pear. International Journal of Plant Breeding 3 (1): 1–27.
Peil A., Emeriewen O.F., Khan A., Kostick S., Malnoy M. 2020. Status of fire blight resistance breeding in Malus. Journal of Plant Pathology 103 (Suppl 1): 3–12. DOI: 10.1007/s42161-020-00581-8
Peil A., Flachowsky H., Hanke M.V., Richter K., Rode J. 2011. Inoculations of Malus × robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5. Acta Horticulturae 896: 357–362. DOI: 10.17660/ActaHortic.2011.896.49
Peil A., Garcia-Libreros T., Ritcher K., Trognitz F.C., Trognitz B., Hanke M.-V., Flachowsky H. 2007. Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breeding 126 (5): 470–475. DOI: 10.1111/j.1439- 0523.2007.01408.x
Peil A., Hübert C., Wensing A., Horner M., Emeriewen O.F., Richter K., Wöhner T., Chagné D., Orellana-Torrejon C., Saeed M., Troggio M., Stefani E., Gardiner S.E., Hanke M.-V., Flachowsky H., Bus V.G.M. 2019. Mapping of fire blight resistance in Malus × robusta 5 flowers following artificial inoculation. BMC Plant Biology 19: 532. DOI: 10.1186/s12870-019-2154-7
Pompili V., Dalla Costa L., Piazza S., Pindo M., Malnoy M. 2020. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnology Journal 18 (3): 845–858. DOI: 10.1111/ pbi.13253
Psallidas P.G., Tsiantos J. 2000. Chemical control of fire blight. s. 199–234. W: Fire Blight. The Disease and its Causative Agent, Erwinia amylovora (J.L. Vanneste, red.). CABI Publishing, CAB International, Wallingford, UK, 370 ss. ISBN 0-85199-294-3.
Puławska J., Sobiczewski P. 2012. Phenotypic and genetic diversity of Erwinia amylovora: the causal agent of fire blight. Trees 26: 3–12. DOI: 10.1007/s00468-011-0643-x
Richter K., Fischer C. 2002. Stability of fire blight resistance in apple. Acta Horticulturae 590: 381–384. DOI: 10.17660/ActaHortic.2002.590.58
Schlathölter I., Broggini G.A.L., Streb S., Studer B., Patocchi A. 2023. Field study of the fire-blight-resistant cisgenic apple line C44.4.146. The Plant Journal 113 (6): 1160–1175. DOI: 10.1111/tpj.16083
Schoofs H., Deckers T., Verjans W., Bylemans D. 2014. Fire blight control strategy in Belgium. Acta Horticulturae 1056: 57–64. DOI: 10.17660/ActaHortic.2014.1056.6
Schouten H.J., Krens F.A., Jacobsen E. 2006. Cisgenic plants are similar to traditionally bred plants. EMBO Reports 7 (8): 750–753. DOI: 10.1038/sj.embor.7400769
Sillerova J., Korba J., Paprstein F., Sedlak J. 2014. Testing of susceptibility level of Czech apple cultivars to fire blight (Erwinia amylovora) in field conditions. Acta Horticulturae 1056: 267–270. DOI: 10.17660/ActaHortic.2014.1056.45
Sobiczewski P. 2011. Integrated management of fire blight (Erwinia amylovora) on apple and pear. Rasteniev’dni Nauki (Plant science) 48 (1): 6–13.
Sobiczewski P., Bielicki P. 2022. Nowy status sprawcy zarazy ogniowej. Miesięcznik Praktycznego Sadownictwa SAD 4/2022: 40–47.
Sobiczewski P., Bubán T. 2004. The effect of Regalis® (prohexadione calcium) on the reduction of fire blight (Erwinia amylovora) severity in apple trees. International Journal of Horticultural Science 10 (2): 61–66. DOI: 10.31421/IJHS/10/2/462
Sobiczewski P., Keller-Przybyłkowicz S., Lewandowski M., Mikiciński A., Maciorowski R. 2021. Phenotypic and marker-assisted characterization of new apple genotypes with high resistance to fire blight. European Journal of Plant Pathology 161: 49–61. DOI: 10.1007/s10658-021-02303-x
Sobiczewski P., Peil A., Mikiciński A., Richter K., Lewandowski M., Żurawicz E., Kellerhals M. 2015. Susceptibility of apple genotypes from European genetic resources to fire blight (Erwinia amylovora). European Journal of Plant Pathology 141: 51–62. DOI: 10.1007/s10658-014-0521-7
Sobiczewski P., Suski Z.W. 1988. Fireblight in Poland. Bulletin OEPP/EPPO Bulletin 18 (3): 375–379.
Sobiczewski P., Żurawicz E., Berczyński S., Lewandowski M. 2004. Terminal shoot susceptibility of new Polish apple cultigens to fire blight (Erwinia amylovora). [Ocena podatności nowych polskich odmian i klonów jabłoni na zarazę ogniową]. Folia Horticulturae 16 (2): 149–157.
Sobiczewski P., Żurawicz E., Berczyński S., Lewandowski M. 2006. Fire blight susceptibility of new apple cultivars and clones from Poland. Acta Horticulturae 704: 551–556. DOI: 10.17660/ActaHortic.2006.704.88
Sobiczewski P., Żurawicz E., Berczyński S., Mikiciński A., Lewandowski M. 2008. The importance of the type of Erwinia amylovora inoculum in screening of apple genotypes susceptibility to fire blight. [Znaczenie rodzaju inokulum Erwinia amylovora w badaniach nad oceną podatności genotypów jabłoni na zarazę ogniową]. Journal of Fruit and Ornamental Plant Research 16: 305–313.
Steiner P. 2000. Integrated orchard and nursery management for the control of fire blight. s. 339–358. W: Fire Blight. The Disease and its Causative Agent, Erwinia amylovora (J.L. Vanneste, red.). CABI Publishing, CAB International, Wallingford, UK, 370 ss. ISBN 0-85199-294-3.
Stockwell V.O., Duffy B. 2012. Use of antibiotics in plant agriculture. Revue Scientifique et Technique de I OIE - Office International des Epizooties 31 (1): 199–210. DOI: 10.20506/rst.31.1.2104
Szalatnay D., Eder-Bauermeister R., Duffy B., Kellerhals M. 2009. Characterization of fruit genetic resources in Switzerland. Acta Horticulturae 814: 143–148. DOI: 10.17660/ActaHortic.2009.814.17
Tegtmeier R., Pompili V., Singh J., Micheletti D., Silva K.J.P., Malnoy M., Khan A. 2020. Candidate gene mapping identifies genomic variations in the fire blight susceptibility genes HIPM and DIPM across the Malus germplasm. Scientific Reports 10: 16317. DOI: 10.1038/s41598-020-73284-w
Thibault B., Le Lezec M. 1990. Sensibilité au feu bactérien des principales variétés de pommier et de poirier utilisées en Europe. s. 96–109. W: Fire Blight of Pomoïdeae (Erwinia amylovora, Burrill, Winslow et al.). Applied Research in Europe (1978– 1988). EUR 12601, ECSC-EEC-EAEC, Brussels-Luxembourg.
van der Zwet T., Keil H.L. 1979. Fire Blight – A Bacterial Disease of Rosaceous Plants. Agriculture Handbook Number 510. United States Department of Agriculture, Washington, D.C., 200 ss.
van der Zwet T., Orolaza-Halbrendt N., Zeller W. 2012. Fire Blight: History, Biology and Management. The American Phytopathological Society Press, St. Paul, MN, USA. ISBN 978-0-89054-483-9. DOI: 10.1094/9780890544839
Vanneste J.L. 2000. What is fire blight? Who is Erwinia amylovora? How to control it? s. 1–6. W: Fire Blight. The Disease and its Causative Agent, Erwinia amylovora (J.L. Vanneste, red.). CABI Publishing, CAB International, Wallingford, UK, 370 ss. ISBN 0-85199-294-3.
Vogt I., Wöhner T., Richter K., Flachowsky H., Sundin G.W., Wensing A., Savory E.A., Geider K., Day B., Hanke V.-M., Peil A. 2013. Gene-for-gene relationship in the host–pathogen system Malus × robusta 5–Erwinia amylovora. New Phytologist 197 (4): 1262–1275. DOI: 10.1111/nph.12094
Würdig J., Flachowsky H., Saß A., Peil A., Hanke M.V. 2015. Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Molecular Breeding 35: 95. DOI: 10.1007/ s11032-015-0291-8 |
Progress in Plant Protection (2023) 63: 155-165 |
First published on-line: 2023-09-15 14:28:00 |
http://dx.doi.org/10.14199/ppp-2023-017 |
Full text (.PDF) BibTeX Mendeley Back to list |