Zastosowanie sekwencjonowania nowej generacji (NGS) w analizie mikrobiomu ziaren pszenicy ozimej
Application of next-generation sequencing (NGS) in the analysis of the winter wheat grain microbiome
Katarzyna Pieczul, e-mail: k.pieczul@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Władysława Węgorka 20, 60-318 Poznań, PolskaIlona Świerczyńska, e-mail: i.swierczynska@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Władysława Węgorka 20, 60-318 Poznań, PolskaAndrzej Wójtowicz, e-mail: a.wojtowicz@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Władysława Węgorka 20, 60-318 Poznań, PolskaStreszczenie |
Mikrobiom ziarna pszenicy ozimej został scharakteryzowany na podstawie wyników sekwencjonowania nowej generacji (NGS) regionów rybosomalnego DNA (rDNA). Uzyskane wyniki ujawniły znaczące różnice w składzie mikrobiomu w kolejnych latach badań. W latach 2020 i 2022 dominującymi gatunkami były Blumeria graminicola (40% i 70% zidentyfikowanych sekwencji), Alternaria infectoria (14% i 4%) oraz Mycosphaerella tassiana (12% i 8%). Natomiast w 2021 roku najczęściej wykrywanymi gatunkami były M. tassiana (20%), Sporobolomyces roseus (13%) i B. graminicola (11%). Analiza potwierdziła obecność grzybów z rodzaju Fusarium we wszystkich latach badań, przy czym udział procentowy ich sekwencji podlegał znacznym wahaniom – od 0,5% w 2020 roku do 5,5% w 2021 roku. Zidentyfikowano cztery gatunki: F. graminearum, F. poae, F. sporotrichioides oraz F. culmorum. Udział grzybów drożdżoidalnych w całkowitej liczbie odczytanych sekwencji także zmieniał się na przestrzeni lat – w 2020 roku wynosił 20%, w 2021 roku wzrósł do 50%, a w 2022 roku spadł do 12%. Dominowały dwa gatunki: S. roseus oraz Vishniacozyma spp., w tym V. victoriae. Ponadto zidentyfikowano inne gatunki grzybów drożdżoidalnych, m.in. Filobasidium wieringae, Filobasidium stepposum, Dioszegia hungarica, Aureobasidium pullulans, Holtermaniella wattica, Bulleromyces albus oraz Bullera crocea. Uzyskane wyniki podkreślają dynamiczny charakter mikrobiomu pszenicy oraz jego wrażliwość na zmieniające się warunki środowiskowe.
Microbiome of winter wheat grain was characterized based on next-generation sequencing (NGS) of ribosomal DNA (rDNA) regions. The obtained results revealed significant differences in microbiome composition across the study years. In 2020 and 2022, the dominant species were Blumeria graminicola (40% and 70% of identified sequences), Alternaria infectoria (14% and 4%), and Mycosphaerella tassiana (12% and 8%). In contrast, in 2021, the most frequently detected species were M. tassiana (20%), Sporobolomyces roseus (13%), andB. graminicola (11%). The analysis confirmed the presence of Fusarium species in all study years, with their sequence percentage fluctuating significantly – from 0.5% in 2020 to 5.5% in 2021. Four species were identified: F. graminearum, F. poae, F. sporotrichioides and F. culmorum. The proportion of yeast-like fungi in the total number of sequences also varied over the years, accounting for 20% in 2020, rising to 50% in 2021, and decreasing to 12% in 2022. Two taxons were dominant: S. roseus and Vishniacozyma spp., including V. victoriae. Additionally, other yeast-like fungi were identified, including Filobasidium wieringae, Filobasidium stepposum, Dioszegia hungarica, Aureobasidium pullulans, Holtermaniella wattica, Bulleromyces albus, and Bullera crocea. The results highlight the dynamic nature of the wheat microbiome and its sensitivity to changing environmental conditions. |
Słowa kluczowe |
mikrobiom; pszenica ozima; ziarno; grzyby; sekwencjonowanie nowej generacji (NGS); microbiome; winter wheat; grain; fungi; next-generation sequencing (NGS) |
Referencje |
Abdelsalam S.S.H., Mugwanya M., Gad A.G., Basyony A.B.A. 2024. Deciphering the wheat seed core mycobiome of two Egyptian cultivars (Giza 171 and Sids 14) by using high throughput amplicon sequencing of the ITS2 region. Journal of Plant Pathology 106 (2): 1325–1334. DOI: 10.1007/s42161-024-01689-x
Alfonzo A., Sicard D., Di Miceli G., Guezenec S., Settanni L. 2021. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiology 94 (1–2): 103666. DOI: 10.1016/j.fm.2020.103666
Ali A., Ölmez F., Zeshan M.A., Mubeen M., Iftikhar Y., Sajid A., Abid M., Kumar A., Divvela P.K., Solanki M.K. 2024. Yeast-based solutions in controlling plant pathogens. Biocatalysis and Agricultural Biotechnology 58: 103199. DOI: 10.1016/j.bcab.2024.103199
Aslam S., Tahir A., Aslam M.F., Alam M.W., Shedayi A.A., Sadia S. 2017. Recent advances in molecular techniques for the identification of phytopathogenic fungi – a mini review. Journal of Plant Interactions 12 (1): 493–504. DOI: 10.1080/17429145.2017.1397205
Barret M., Briand M., Bonneau S., Préveaux A., Valière S., Bouchez O., Hunault G., Simoneau P., Jacquesa M.A. 2015. Emergence shapes the structure of the seed microbiota. Applied and Environmental Microbiology 81 (4): 1257–1266. DOI: 10.1128/AEM.03722-14
Bernreiter A. 2017. Molecular diagnostics to identify fungal plant pathogens – a review of current methods. Ecuador es Calidad: Revista Científica Ecuatoriana 4: 26–35.
Castoria R., Morena V., Caputo L., Panfili G., De Curtis F., De Cicco V. 2005. Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 95 (11): 1271–1278. DOI: 10.1094/PHYTO-95-1271
Chen J., Sharifi R., Khan M.S.S., Islam F., Bhat J.A., Kui L., Majeed A. 2022. Wheat microbiome: structure, dynamics, and role in improving performance under stress environments. Frontiers in Microbiology 12: 821546. DOI: 10.3389/fmicb.2021.821546
Comby M., Gacoin M., Robineau M., Rabenoelina F., Ptas S., Dupont J., Profizi C., Baillieul F. 2017. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research 202: 11–20. DOI: 10.1016/j.micres.2017.04.014
Díaz-Cruz G.A., Smith C.M., Wiebe K.F., Villanueva S.M., Klonowski A.R., Cassone B.J. 2019. Applications of next-generation sequencing for large-scale pathogen diagnoses in soybean. Plant Disease 103 (6): 1075–1083. DOI: 10.1094/PDIS-05-18-0905-RE
Francesconi S. 2022. High-throughput and point-of-care detection of wheat fungal diseases: Potentialities of molecular and phenomics techniques toward in-field applicability. Frontiers in Agronomy 4: 980083. DOI: 10.3389/fagro.2022.980083
Gałązka A., Grządziel J. 2018. Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of maize using different cultivation techniques. Frontiers in Microbiology 9: 76. DOI: 10.3389/fmicb.2018.00076
Godfray H.C., Mason-D’Croz D., Robinson S. 2016. Food system consequences of a fungal disease epidemic in a major crop. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 371 (1709): 20150467. DOI: 10.1098/rstb.2015.0467
Hariharan G., Prasannath K. 2021. Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology 10: 600234. DOI: 10.3389/fcimb.2020.600234
Ianiri G., Pinedo C., Fratianni A., Panfili G., Castoria R. 2017. Patulin degradation by the biocontrol yeast Sporobolomyces sp. is an inducible process. Toxins 9 (2): 61. DOI: 10.3390/toxins9020061
Karlsson I., Friberg H., Kolseth A.K., Steinberg C., Persson P. 2017. Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular Ecology 26 (13): 3424–3436. DOI: 10.1111/mec.14132
Kowalska J., Krzymińska J., Tyburski J. 2022. Yeasts as a potential biological agent in plant disease protection and yield improvement – A short review. Agriculture 12 (9): 1404. DOI: 10.3390/agriculture12091404
Kurtzman C.P., Fell J.W., Boekhout T., Robert V. 2011. Methods for isolation, phenotypic characterization, and maintenance of yeasts. s. 87–110. W: The Yeasts: A Taxonomic Study, Chapter 7, 5th ed. (C.P. Kurtzman, J.W. Fell, T. Boekhout, red.). Elsevier B.V., Amsterdam, The Netherlands, 2354 ss. DOI: 10.1016/B978-0-444-52149-1.00007-0
Lanver D., Müller A.N., Happel P., Schweizer G., Haas F.B., Franitza M., Kahmann R. 2018. The biotrophic development of Ustilago maydis studied by RNA-Seq analysis. The Plant Cell 30 (2): 300–323. DOI: 10.1105/tpc.17.00764
Lievens B., Thomma B.P.H.J. 2005. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95 (12): 1374–1380. DOI: 10.1094/PHYTO-95-1374
Masenya K., Manganyi M.C., Dikobe T.B. 2024. Exploring cereal metagenomics: unravelling microbial communities for improved food security. Microorganisms 12 (3): 510. DOI: 10.3390/microorganisms12030510
McCartney H.A., Foster S.J., Fraaije B.A., Ward E. 2003. Molecular diagnostics for fungal plant pathogens. Pest Management Science 59 (2): 129–142. DOI: 10.1002/ps.575
Minutillo S.A., Ruano-Rosa D., Abdelfattah A., Schena L., Malacrinò A. 2022. The fungal microbiome of wheat flour includes potential mycotoxin producers. Foods 11 (5): 676. DOI: 10.3390/foods11050676
Nelson E.B. 2018. The seed microbiome: Origins, interactions, and impacts. Plant and Soil 422: 7–34. DOI: 10.1007/s11104-017-3289-7
Nicolaisen M., Justesen A.F., Knorr K., Wang J., Pinnschmidt H.O. 2014. Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecology 11: 145–153. DOI: 10.1016/j.funeco.2014.06.002
Patra J.K., Das G., Das S.K., Thatoi H. 2020. Isolation, culture, and biochemical characterization of microbes. s. 25–45. W: A Practical Guide to Environmental Biotechnology (J.K. Patra, G. Das, S.K. Das, H. Thatoi, red.). Springer, Singapore, 182 ss. DOI: 10.1007/978-981-15-6252-5_4
Pieczul K., Świerczyńska I., Wójtowicz A. 2025. Advanced rDNA-based detection of wheat pathogens in grain samples using next-generation sequencing (NGS). Pathogens 14 (2): 164. DOI: 10.3390/pathogens14020164
Pieczul K., Wąsowska A. 2017. The application of next-generation sequencing (NGS) for monitoring of Zymoseptoria tritici Qoi resistance. Crop Protection 92: 143–147. DOI: 10.1016/j.cropro.2016.10.026
Rojas E.C., Jensen B., Jørgensen H.J.L., Latz M.A.C., Esteban P., Ding Y., Collinge D.B. 2020a. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control 144: 104222. DOI: 10.1016/j.biocontrol.2020.104222
Rojas E.C., Sapkota R., Jensen B., Jørgensen H.J.L., Henriksson T., Jørgensen L.N., Nicolaisen M., Collinge D.B. 2020b. Fusarium head blight modifies fungal endophytic communities during infection of wheat spikes. Microbial Ecology 79 (2): 397–408. DOI: 10.1007/s00248-019-01426-3
Salamon S., Mikołajczak K., Błaszczyk L. 2023. Constellation of the endophytic mycobiome in spring and winter wheat cultivars grown under various conditions. Scientific Reports 13: 6089. DOI: 10.1038/s41598-023-33195-y
Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W. 2012. Fungal Barcoding Consortium author list. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109 (16): 6241–6246. DOI: 10.1073/pnas.1117018109
Sharma P., Sharma S. 2016. Paradigm shift in plant disease diagnostics: A journey from conventional diagnostics to nano-diagnostics. s. 237–264. W: Current Trends in Plant Disease Diagnostics and Management Practices (P. Kumar, V. Gupta, A. Tiwari, M. Kamle, red.). Springer, Cham, Switzerland, 469 ss. DOI: 10.1007/978-3-319-27312-9_11
Solanki M.K., Abdelfattah A., Sadhasivam S., Zakin V., Wisniewski M., Droby S., Sionov E. 2021. Analysis of stored wheat grain-associated microbiota reveals biocontrol activity among microorganisms against mycotoxigenic fungi. Journal of Fungi 7 (9): 781. DOI: 10.3390/jof7090781
Tedersoo L., Drenkhan R., Anslan S., Morales-Rodriguez C., Cleary M. 2019. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Molecular Ecology Resources 19 (1): 47–76. DOI: 10.1111/1755-0998.12959
Toju H., Tanabe A.S., Yamamoto S., Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7 (7): e40863. DOI: 10.1371/journal.pone.0040863
Wang R., Li M., Jin R., Liu Y., Guan E., Mohamed S.R., Bian K. 2024. Interactions among the composition changes in fungal communities and the main mycotoxins in simulated stored wheat grains. Journal of the Science of Food and Agriculture 104 (1): 373–382. DOI: 10.1002/jsfa.12928
War A.F., Bashir I., Reshi Z.A., Kardol P., Rashid I. 2023. Insights into the seed microbiome and its ecological significance in plant life. Microbiological Research 269: 127318. DOI: 10.1016/j.micres.2023.127318 |
Progress in Plant Protection (2025) : 0-0 |
Data pierwszej publikacji on-line: 2025-06-06 09:39:39 |
http://dx.doi.org/10.14199/ppp-2025-009 |
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy |