Progress in Plant Protection

Zastosowanie sekwencjonowania nowej generacji (NGS) w analizie mikrobiomu ziaren pszenicy ozimej
Application of next-generation sequencing (NGS) in the analysis of the winter wheat grain microbiome

Katarzyna Pieczul, e-mail: k.pieczul@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Władysława Węgorka 20, 60-318 Poznań, Polska

Ilona Świerczyńska, e-mail: i.swierczynska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Władysława Węgorka 20, 60-318 Poznań, Polska

Andrzej Wójtowicz, e-mail: a.wojtowicz@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Władysława Węgorka 20, 60-318 Poznań, Polska
Streszczenie

Mikrobiom ziarna pszenicy ozimej został scharakteryzowany na podstawie wyników sekwencjonowania nowej generacji (NGS) regionów rybosomalnego DNA (rDNA). Uzyskane wyniki ujawniły znaczące różnice w składzie mikrobiomu w kolejnych latach badań. W latach 2020 i 2022 dominującymi gatunkami były Blumeria graminicola (40% i 70% zidentyfikowanych sekwencji), Alternaria infectoria (14% i 4%) oraz Mycosphaerella tassiana (12% i 8%). Natomiast w 2021 roku najczęściej wykrywanymi gatunkami były M. tassiana (20%), Sporo­bolomyces roseus (13%) i B. graminicola (11%). Analiza potwierdziła obecność grzybów z rodzaju Fusarium we wszystkich latach badań, przy czym udział procentowy ich sekwencji podlegał znacznym wahaniom – od 0,5% w 2020 roku do 5,5% w 2021 roku. Zidentyfikowa­no cztery gatunki: F. graminearum, F. poae, F. sporotrichioides oraz F. culmorum. Udział grzybów drożdżoidalnych w całkowitej liczbie odczytanych sekwencji także zmieniał się na przestrzeni lat – w 2020 roku wynosił 20%, w 2021 roku wzrósł do 50%, a w 2022 roku spadł do 12%. Dominowały dwa gatunki: S. roseus oraz Vishniacozyma spp., w tym V. victoriae. Ponadto zidentyfikowano inne gatunki grzybów drożdżoidalnych, m.in. Filobasidium wieringae, Filobasidium stepposum, Dioszegia hungarica, Aureobasidium pullulans, Holtermaniella wattica, Bulleromyces albus oraz Bullera crocea. Uzyskane wyniki podkreślają dynamiczny charakter mikrobiomu pszenicy oraz jego wraż­liwość na zmieniające się warunki środowiskowe.

 

Microbiome of winter wheat grain was characterized based on next-generation sequencing (NGS) of ribosomal DNA (rDNA) regions. The obtained results revealed significant differences in microbiome composition across the study years. In 2020 and 2022, the dominant spe­cies were Blumeria graminicola (40% and 70% of identified sequences), Alternaria infectoria (14% and 4%), and Mycosphaerella tassiana (12% and 8%). In contrast, in 2021, the most frequently detected species were M. tassiana (20%), Sporobolomyces roseus (13%), andB. graminicola (11%). The analysis confirmed the presence of Fusarium species in all study years, with their sequence percentage fluc­tuating significantly – from 0.5% in 2020 to 5.5% in 2021. Four species were identified: F. graminearum, F. poae, F. sporotrichioides and F. culmorum. The proportion of yeast-like fungi in the total number of sequences also varied over the years, accounting for 20% in 2020, rising to 50% in 2021, and decreasing to 12% in 2022. Two taxons were dominant: S. roseus and Vishniacozyma spp., including V. victo­riae. Additionally, other yeast-like fungi were identified, including Filobasidium wieringae, Filobasidium stepposum, Dioszegia hungarica, Aureobasidium pullulans, Holtermaniella wattica, Bulleromyces albus, and Bullera crocea. The results highlight the dynamic nature of the wheat microbiome and its sensitivity to changing environmental conditions.

Słowa kluczowe
mikrobiom; pszenica ozima; ziarno; grzyby; sekwencjonowanie nowej generacji (NGS); microbiome; winter wheat; grain; fungi; next-generation sequencing (NGS)
Referencje

Abdelsalam S.S.H., Mugwanya M., Gad A.G., Basyony A.B.A. 2024. Deciphering the wheat seed core mycobiome of two Egyp­tian cultivars (Giza 171 and Sids 14) by using high throughput amplicon sequencing of the ITS2 region. Journal of Plant Pathol­ogy 106 (2): 1325–1334. DOI: 10.1007/s42161-024-01689-x

 

Alfonzo A., Sicard D., Di Miceli G., Guezenec S., Settanni L. 2021. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiology 94 (1–2): 103666. DOI: 10.1016/j.fm.2020.103666

 

Ali A., Ölmez F., Zeshan M.A., Mubeen M., Iftikhar Y., Sajid A., Abid M., Kumar A., Divvela P.K., Solanki M.K. 2024. Yeast-based solutions in controlling plant pathogens. Biocatalysis and Agricultural Biotechnology 58: 103199. DOI: 10.1016/j.bcab.2024.103199

 

Aslam S., Tahir A., Aslam M.F., Alam M.W., Shedayi A.A., Sadia S. 2017. Recent advances in molecular techniques for the identification of phytopathogenic fungi – a mini review. Journal of Plant Interactions 12 (1): 493–504. DOI: 10.1080/17429145.2017.1397205

 

Barret M., Briand M., Bonneau S., Préveaux A., Valière S., Bouchez O., Hunault G., Simoneau P., Jacquesa M.A. 2015. Emer­gence shapes the structure of the seed microbiota. Applied and Environmental Microbiology 81 (4): 1257–1266. DOI: 10.1128/AEM.03722-14

 

Bernreiter A. 2017. Molecular diagnostics to identify fungal plant pathogens – a review of current methods. Ecuador es Calidad: Revista Científica Ecuatoriana 4: 26–35.

 

Castoria R., Morena V., Caputo L., Panfili G., De Curtis F., De Cicco V. 2005. Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 95 (11): 1271–1278. DOI: 10.1094/PHYTO-95-1271

 

Chen J., Sharifi R., Khan M.S.S., Islam F., Bhat J.A., Kui L., Majeed A. 2022. Wheat microbiome: structure, dynamics, and role in improving performance under stress environments. Frontiers in Microbiology 12: 821546. DOI: 10.3389/fmicb.2021.821546

 

Comby M., Gacoin M., Robineau M., Rabenoelina F., Ptas S., Dupont J., Profizi C., Baillieul F. 2017. Screening of wheat endo­phytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research 202: 11–20. DOI: 10.1016/j.micres.2017.04.014

 

Díaz-Cruz G.A., Smith C.M., Wiebe K.F., Villanueva S.M., Klonowski A.R., Cassone B.J. 2019. Applications of next-generation sequencing for large-scale pathogen diagnoses in soybean. Plant Disease 103 (6): 1075–1083. DOI: 10.1094/PDIS-05-18-0905-RE

 

Francesconi S. 2022. High-throughput and point-of-care detection of wheat fungal diseases: Potentialities of molecular and phe­nomics techniques toward in-field applicability. Frontiers in Agronomy 4: 980083. DOI: 10.3389/fagro.2022.980083

 

Gałązka A., Grządziel J. 2018. Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of maize using different cultivation techniques. Frontiers in Microbiology 9: 76. DOI: 10.3389/fmicb.2018.00076

 

Godfray H.C., Mason-D’Croz D., Robinson S. 2016. Food system consequences of a fungal disease epidemic in a major crop. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 371 (1709): 20150467. DOI: 10.1098/rstb.2015.0467

 

Hariharan G., Prasannath K. 2021. Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology 10: 600234. DOI: 10.3389/fcimb.2020.600234

 

Ianiri G., Pinedo C., Fratianni A., Panfili G., Castoria R. 2017. Patulin degradation by the biocontrol yeast Sporobolomyces sp. is an inducible process. Toxins 9 (2): 61. DOI: 10.3390/toxins9020061

 

Karlsson I., Friberg H., Kolseth A.K., Steinberg C., Persson P. 2017. Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular Ecology 26 (13): 3424–3436. DOI: 10.1111/mec.14132

 

Kowalska J., Krzymińska J., Tyburski J. 2022. Yeasts as a potential biological agent in plant disease protection and yield improve­ment – A short review. Agriculture 12 (9): 1404. DOI: 10.3390/agriculture12091404

 

Kurtzman C.P., Fell J.W., Boekhout T., Robert V. 2011. Methods for isolation, phenotypic characterization, and maintenance of yeasts. s. 87–110. W: The Yeasts: A Taxonomic Study, Chapter 7, 5th ed. (C.P. Kurtzman, J.W. Fell, T. Boekhout, red.). Elsevier B.V., Amsterdam, The Netherlands, 2354 ss. DOI: 10.1016/B978-0-444-52149-1.00007-0

 

Lanver D., Müller A.N., Happel P., Schweizer G., Haas F.B., Franitza M., Kahmann R. 2018. The biotrophic development of Usti­lago maydis studied by RNA-Seq analysis. The Plant Cell 30 (2): 300–323. DOI: 10.1105/tpc.17.00764

 

Lievens B., Thomma B.P.H.J. 2005. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practice. Phytopathology 95 (12): 1374–1380. DOI: 10.1094/PHYTO-95-1374

 

Masenya K., Manganyi M.C., Dikobe T.B. 2024. Exploring cereal metagenomics: unravelling microbial communities for improved food security. Microorganisms 12 (3): 510. DOI: 10.3390/microorganisms12030510

 

McCartney H.A., Foster S.J., Fraaije B.A., Ward E. 2003. Molecular diagnostics for fungal plant pathogens. Pest Management Science 59 (2): 129–142. DOI: 10.1002/ps.575

 

Minutillo S.A., Ruano-Rosa D., Abdelfattah A., Schena L., Malacrinò A. 2022. The fungal microbiome of wheat flour includes potential mycotoxin producers. Foods 11 (5): 676. DOI: 10.3390/foods11050676

 

Nelson E.B. 2018. The seed microbiome: Origins, interactions, and impacts. Plant and Soil 422: 7–34. DOI: 10.1007/s11104-017-3289-7

 

Nicolaisen M., Justesen A.F., Knorr K., Wang J., Pinnschmidt H.O. 2014. Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecology 11: 145–153. DOI: 10.1016/j.funeco.2014.06.002

 

Patra J.K., Das G., Das S.K., Thatoi H. 2020. Isolation, culture, and biochemical characterization of microbes. s. 25–45. W: A Practical Guide to Environmental Biotechnology (J.K. Patra, G. Das, S.K. Das, H. Thatoi, red.). Springer, Singapore, 182 ss. DOI: 10.1007/978-981-15-6252-5_4

 

Pieczul K., Świerczyńska I., Wójtowicz A. 2025. Advanced rDNA-based detection of wheat pathogens in grain samples using next-generation sequencing (NGS). Pathogens 14 (2): 164. DOI: 10.3390/pathogens14020164

 

Pieczul K., Wąsowska A. 2017. The application of next-generation sequencing (NGS) for monitoring of Zymoseptoria tritici Qoi resistance. Crop Protection 92: 143–147. DOI: 10.1016/j.cropro.2016.10.026

 

Rojas E.C., Jensen B., Jørgensen H.J.L., Latz M.A.C., Esteban P., Ding Y., Collinge D.B. 2020a. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biological Control 144: 104222. DOI: 10.1016/j.biocon­trol.2020.104222

 

Rojas E.C., Sapkota R., Jensen B., Jørgensen H.J.L., Henriksson T., Jørgensen L.N., Nicolaisen M., Collinge D.B. 2020b. Fusarium head blight modifies fungal endophytic communities during infection of wheat spikes. Microbial Ecology 79 (2): 397–408. DOI: 10.1007/s00248-019-01426-3

 

Salamon S., Mikołajczak K., Błaszczyk L. 2023. Constellation of the endophytic mycobiome in spring and winter wheat cultivars grown under various conditions. Scientific Reports 13: 6089. DOI: 10.1038/s41598-023-33195-y

 

Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W. 2012. Fungal Barcoding Consortium au­thor list. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109 (16): 6241–6246. DOI: 10.1073/pnas.1117018109

 

Sharma P., Sharma S. 2016. Paradigm shift in plant disease diagnostics: A journey from conventional diagnostics to nano-diagnos­tics. s. 237–264. W: Current Trends in Plant Disease Diagnostics and Management Practices (P. Kumar, V. Gupta, A. Tiwari, M. Kamle, red.). Springer, Cham, Switzerland, 469 ss. DOI: 10.1007/978-3-319-27312-9_11

 

Solanki M.K., Abdelfattah A., Sadhasivam S., Zakin V., Wisniewski M., Droby S., Sionov E. 2021. Analysis of stored wheat grain-associated microbiota reveals biocontrol activity among microorganisms against mycotoxigenic fungi. Journal of Fungi 7 (9): 781. DOI: 10.3390/jof7090781

 

Tedersoo L., Drenkhan R., Anslan S., Morales-Rodriguez C., Cleary M. 2019. High-throughput identification and diagnos­tics of pathogens and pests: Overview and practical recommendations. Molecular Ecology Resources 19 (1): 47–76. DOI: 10.1111/1755-0998.12959

 

Toju H., Tanabe A.S., Yamamoto S., Sato H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7 (7): e40863. DOI: 10.1371/journal.pone.0040863

 

Wang R., Li M., Jin R., Liu Y., Guan E., Mohamed S.R., Bian K. 2024. Interactions among the composition changes in fungal communities and the main mycotoxins in simulated stored wheat grains. Journal of the Science of Food and Agriculture 104 (1): 373–382. DOI: 10.1002/jsfa.12928

 

War A.F., Bashir I., Reshi Z.A., Kardol P., Rashid I. 2023. Insights into the seed microbiome and its ecological significance in plant life. Microbiological Research 269: 127318. DOI: 10.1016/j.micres.2023.127318

Progress in Plant Protection (2025) : 0-0
Data pierwszej publikacji on-line: 2025-06-06 09:39:39
http://dx.doi.org/10.14199/ppp-2025-009
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy