Analiza mutacji genu CYP51 metodą wysokoprzepustowego sekwencjonowania (HTS) w populacji Zymoseptoria tritici z zachodniej Polski
Analysis of CYP51 gene mutations in a Zymoseptoria tritici population from western Poland using high-throughput sequencing (HTS)
Katarzyna Pieczul, e-mail: k.pieczul@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaAgnieszka Kiniec, e-mail: a.kiniec@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Toruniu, Pigwowa 16, 87-100 Toruń, PolskaStreszczenie |
Intensywne stosowanie triazoli do zwalczania Zymoseptoria tritici doprowadziło do obniżenia wrażliwości tego patogenu na fungicydy DMI. Głównym mechanizmem odporności na triazole są mutacje punktowe w genie CYP51, kodującym enzym 14α-dimetylazę sterolu. Sekwencjonowanie NGS genu CYP51 izolatów Z. tritici zbieranych na terenie Wielkopolski przeprowadzono w technologii PacBio RSII. W badaniu zidentyfikowano 40 mutacji z częstością powyżej 20%, z czego 12 prowadziło do substytucji aminokwasowych w białku 14α-dimetylazy. Wśród nich mutacje L50S, D134G, V136A, S188N, A379G, I381V, Y461H i N513K były wcześniej opisywane, jako powiązane ze wzrostem odporności na triazole. Ponadto wykryto 22 mutacje synonimiczne, które nie wpływały na strukturę białka, ale świadczyły o dużej zmienności genetycznej populacji Z. tritici. Dodatkowo zidentyfikowano dwie delecje w intronach oraz złożoną delecję sześciu nukleotydów (CTATGG), która mogła modyfikować sekwencję białka.
The intensive use of triazoles in controlling Zymoseptoria tritici has led to a decrease in its sensitivity to DMI fungicides. The main mechanism of triazole resistance involves point mutations in the CYP51 gene, which encodes the 14α-demethylase enzyme. NGS sequencing of the CYP51 gene in Z. tritici isolates collected in Wielkopolska was performed using PacBio RSII technology. The study identified 40 mutations with a frequency above 20%, of which 12 resulted in amino acid substitutions in the 14α-demethylase protein. Among them, the L50S, D134G, V136A, S188N, A379G, I381V, Y461H, and N513K mutations were previously associated with increased triazole resistance. Additionally, 22 synonymous mutations were detected, which did not alter the protein structure but indicated high genetic variability within the Z. tritici population. Furthermore, two deletions in introns and a complex six-nucleotide deletion (CTATGG) were identified, potentially modifying the protein sequence. |
Słowa kluczowe |
septorioza paskowana liści pszenicy; mutacje w genie CYP51; sekwencjonowanie wysokoprzepustowe (HTS); septoria tritici blotch of wheat; CYP51 gene mutations; high-throughput sequencing (HTS) |
Referencje |
Birr T., Hasler M., Verreet J.-A., Klink H. 2021. Temporal changes in sensitivity of Zymoseptoria tritici field populations to different fungicidal modes of action. Agriculture 11 (3): 269. DOI: 10.3390/agriculture11030269
Cools H.J., Bayon C., Atkins S., Lucas J.A., Fraaije B.A. 2012. Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest Management Science 68 (7): 1034–1040. DOI: 10.1002/ps.3263
Cools H.J., Fraaije B.A. 2013. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Management Science 69 (2): 150–155. DOI: 10.1002/ps.3348
Cools H.J., Mullins J.G., Fraaije B.A., Parker J.E., Kelly D.E., Lucas J.A., Kelly S.L. 2011. Impact of recently emerged sterol 14α-demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity. Applied and Environmental Microbiology 77 (11): 3830–3837. DOI: 10.1128/AEM.00027-11
Delahaye C., Nicolas J. 2021. Sequencing DNA with nanopores: Troubles and biases. PloS One 16 (10): e0257521. DOI: 10.1371/ journal.pone.0257521
Eyal Z. 1999. The Septoria tritici and Stagonospora nodorum blotch diseases of wheat. European Journal of Plant Pathology 105: 629–641.
Fones H., Gurr S. 2015. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genetics and Biology 79: 3–7. DOI: 10.1016/j.fgb.2015.04.004
Glaab A., Weilacher X., Hoffmeister M., Strobel D., Stammler G. 2024. Occurrence and distribution of CYP51 haplotypes of Zymoseptoria tritici in recent years in Europe. Journal of Plant Diseases and Protection 131: 1187–1194. DOI: 10.1007/s41348- 024-00897-y
Gutierrez Vazquez Y., Adams I.P., McGreig S., Walshaw J., van den Berg F., Sanderson R., Pufal H., Conyers C., Langton D., Broadhead R., Harrison C., Boonham N. 2022. Profiling azole resistant haplotypes within Zymoseptoria tritici populations using nanopore sequencing. Frontiers in Agronomy 4: 943440. DOI: 10.3389/fagro.2022.943440
Heick T.M., Justesen A.F., Jørgensen L.N. 2017. Anti-resistance strategies for fungicides against wheat pathogen Zymoseptoria tritici with focus on DMI fungicides. Crop Protection 99: 108–117. DOI: 10.1016/j.cropro.2017.05.009
Huf A., Rehfus A., Lorenz K.H., Bryson R., Voegele R.T., Stammler G. 2018. Proposal for a new nomenclature for CYP51 haplotypes in Zymoseptoria tritici and analysis of their distribution in Europe. Plant Pathology 67 (8): 1706–1712. DOI: 10.1111/ ppa.12891
Jørgensen L.N., Hovmøller M.S., Hansen J.G., Lassen P., Clark B., Bayles R., Rodemann B., Flath K., Jahn M., Goral T., Czembor J.J., Cheyron P., Maumene C., De Pope C., Ban R., Nielsen G.C., Berg G. 2014. IPM strategies and their dilemmas including an introduction to www.eurowheat.org. Journal of Integrative Agriculture 13 (2): 265–281. DOI: 10.1016/S2095-3119(13)60646-2
Jørgensen L.N., Matzen N., Heick T.M., Driscoll A., Clark B., Waite K., Blake J., Glazek M., Maumene C., Couleaud G., Rodemann B., Weigand S., Bataille C., Ban R., Hellin R., Kildea S., Stammler G. 2022. Shifting sensitivity of Septoria tritici blotch compromises field performance and yield of main fungicides in Europe. Frontiers in Plant Science 13: 1060428. DOI: 10.3389/ fpls.2022.1060428
Kiiker R., Juurik M., Heick T.M., Mäe A. 2021. Changes in DMI, SDHI, and QoI fungicide sensitivity in the Estonian Zymoseptoria tritici population between 2019 and 2020. Microorganisms 9 (4): 814. DOI: 10.3390/microorganisms9040814
Kildea S., Dooley H., Byrne S. 2023. A note on the impact of CYP51 alterations and their combination in the wheat pathogen Zymoseptoria tritici on sensitivity to the azole fungicides epoxiconazole and metconazole. The Irish Journal of Agricultural and Food Research 62 (1): 44–50. DOI: 10.15212/ijafr-2023-0103
Leroux P., Albertini C., Gautier A., Gredt M., Walker A.S. 2007. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science 63 (7): 688–698. DOI: 10.1002/ps.1390
Leroux P., Walker A.S. 2011. Multiple mechanisms account for resistance to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science 67 (1): 44–59. DOI: 10.1002/ps.2028
Mäe A., Fillinger S., Sooväli P., Heick T.M. 2020. Fungicide sensitivity shifting of Zymoseptoria tritici in the finnish-baltic region and a novel insertion in the MFS1 promoter. Frontiers in Plant Science 11: 385. DOI: 10.3389/fpls.2020.00385
Omrane S., Audéon C., Ignace A., Duplaix C., Aouini L., Kema G., Walker A.S., Fillinger S. 2017. Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici. mSphere 2 (5): e00393-17. DOI: 10.1128/ mSphere.00393-17
Omrane S., Sghyer H., Audéon C., Lanen C., Duplaix C., Walker A.S., Fillinger S. 2015. Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates. Environmental Microbiology 17 (8): 2805–2823. DOI: 10.1111/1462-2920.12781
Oreiro E.G., Samils B., Kildea S., Heick T., Hellin P., Legrève A., Rodemann B., Berg G., Jørgensen L.N., Friberg H., Berlin A., Zhan J., Andersson B. 2024. DMI fungicide resistance in Zymoseptoria tritici is unlinked to geographical origin and genetic background: a case study in Europe. Pest Management Science 81 (2): 1103–1112. DOI: 10.1002/ps.8514
Rosam K., Monk B.C., Lackner M. 2020. Sterol 14α-demethylase ligand-binding pocket-mediated acquired and intrinsic azole resistance in fungal pathogens. Journal of Fungi 7 (1): 1. DOI: 10.3390/jof7010001
Samils B., Andersson B., Edin E., Elfstrand M., Rönneburg T., Bucur D., Hutton F., Heick T.M., Hellin P., Kildea S. 2021. Development of a PacBio long-read sequencing assay for high-throughput detection of fungicide resistance in Zymoseptoria tritici. Frontiers in Microbiology 12: 692845. DOI: 10.3389/fmicb.2021.692845
Stammler G., Carstensen M., Koch A., Semar M., Strobel D., Schlehuber S. 2008. Frequency of different CYP51-haplotypes of Mycosphaerella graminicola and their impact on epoxiconazole sensitivity and field efficacy. Crop Protection 27 (11): 1448–1456. DOI: 10.1016/j.cropro.2008.07.007
Stammler G., Taher K., Koch A., Haber J., Liebmann B., Bouagila A., Yahyaoui A., Nasraoui B. 2012. Sensitivity of Mycosphaerella graminicola isolates from Tunisia to epoxiconazole and pyraclostrobin. Crop Protection 34: 32–36. DOI: 10.1016/j. cropro.2011.11.007
Torriani S.F., Melichar J.P., Mills C., Pain N., Sierotzki H., Courbot M. 2015. Zymoseptoria tritici: a major threat to wheat production, integrated approaches to control. Fungal Genetics and Biology 79: 8–12. DOI: 10.1016/j.fgb.2015.04.010
Vestergård N.F., Jørgensen L.N., Hellin P., Heick T.M. 2023. Fungicide spraying intensity in the field drives the selection of amino acid alterations conferring resistance in Zymoseptoria tritici. European Journal of Plant Pathology 166 (11): 1–17. DOI: 10.1007/s10658-023-02671-6
Wieczorek T.M., Berg G., Semaškienė R., Mehl A., Sierotzki H., Stammler G., Justesen A.F., Jørgensen L.N. 2015. Impact of DMI and SDHI fungicides on disease control and CYP51 mutations in populations of Zymoseptoria tritici from Northern Europe. European Journal of Plant Patholgy 143 (4): 861–871. DOI: 10.1007/s10658-015-0737-1 |
Progress in Plant Protection (2025) : 0-0 |
Data pierwszej publikacji on-line: 2025-06-20 13:34:13 |
http://dx.doi.org/10.14199/ppp-2025-011 |
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy |