Zastosowanie biostymulatorów w ogrodnictwie
Application of biostimulants in horticulture
Alina Kałużewicz, e-mail: alina.kaluzewicz@up.poznan.pl
Uniwersytet Przyrodniczy w Poznaniu, Dąbrowskiego 159, 60-594 Poznań, PolskaStreszczenie |
Do grupy środków nazywanych biostymulatorami stosowanymi w ogrodnictwie czy rolnictwie należą preparaty zawierające w swoim składzie ekstrakty z alg morskich, roślinne oraz zwierzęce hydrolizaty białkowe, związki humusowe, korzystne bakterie i grzyby oraz korzystne mikroelementy. Celem niniejszego opracowania jest przedstawienie efektów działania biostymulatorów należących do różnych grup. Efekty te obejmują zarówno wzrost i plonowanie roślin, poprawę ich odżywienia, wpływ na zawartość składników bioaktywnych, ochronę przed stresem spowodowanym czynnikami abiotycznymi (np. suszą czy niską temperaturą) lub biotycznymi (np. patogenami bakteryjnymi lub grzybowymi). Stosowanie biostymulatorów stanowi ważny element nowoczesnej uprawy roślin ogrodniczych, która dąży do poprawy wzrostu, plonowania i jakości roślin, przy jednoczesnym ograniczeniu syntetycznych agrochemikaliów.
The group of substances known as biostimulants used in horticulture and agriculture includes preparations containing seaweed extracts, plant and animal protein hydrolysates, humic compounds, beneficial bacteria and fungi, and beneficial elements. The aim of this study is to provide a broad overview of the effects of biostimulants belonging to the above-mentioned groups. These effects include plant growth and yield, improved nutrition, influence on the content of bioactive components, and protection against stress and bacterial and fungal pathogens. The use of biostimulants is an important element of modern horticultural plant cultivation, which aims to improve plant growth, yield and quality while reducing the use of chemicals. |
Słowa kluczowe |
biostymulatory; ekstrakty z alg morskich; hydrolizaty białkowe; kwasy humusowe i fulwowe; mikroorganizmy; mikroelementy; biostimulants; seaweed extracts; protein hydrolysates; humic and fulvic acids; microorganisms; microelements |
Referencje |
Abbas M., Anwar J., Zafar-ul-Hye M., Iqbal Khan R., Saleem M., Rahi A.A., Danish S., Datta R. 2020. Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae 6 (2): 28. DOI: 10.3390/horticulturae6020028
Agarwal P.K., Dangariya M., Agarwal P. 2021. Seaweed extracts: potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research 58: 102363. DOI: 10.1016/j.algal.2021.102363
Al-Saif A.M., Sas-Paszt L., Awad R.M., Mosa W.F. 2023. Apricot (Prunus armeniaca) performance under foliar application of humic acid, brassinosteroids, and seaweed extract. Horticulturae 9: 519. DOI: 10.3390/horticulturae9040519
Ali O., Ramsubhag A., Jayaraman J. 2019. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One 14 (5): e0216710. DOI: 10.1371/journal.pone.0216710
Ambros E., Kotsupiy O., Karpova E., Panova U., Chernonosov A., Trofimova E., Goldenberg B. 2023. A biostimulant based on silicon chelates enhances growth and modulates physiological responses of in-vitro-derived strawberry plants to in vivo conditions. Plants 12 (24): 4193. DOI: 10.3390/plants12244193
Amerian M., Palangi A., Gohari G., Ntatsi G. 2024. Humic acid and grafting as sustainable agronomic practices for increased growth and secondary metabolism in cucumber subjected to salt stress. Scientific Reports 14 (1): 15883. DOI: 10.1038/s41598- 024-66677-8
Amiri Forotaghe Z., Souri M.K., Ghanbari Jahromi M., Mohammadi Torkashvand A. 2022. Influence of humic acid application on onion growth characteristics under water deficit conditions. Journal of Plant Nutrition 45 (7): 1030–1040. DOI: 10.1080/01904167.2021.1994604
Amirkhani M., Netravali A., Huang W., Taylor A.G. 2016. Investigation of soy protein-based biostimulant seed coating for broccoli seedling and plant growth enhancement. Horticultural Science 51: 1121–1126. DOI: 10.21273/HORTSCI10913-16
Ashour M., Hassan S.M., Elshobary M.E., Ammar G.A., Gaber A., Alsanie W.F., Tageldein Mansour A., El-Shenody R. 2021. Impact of commercial seaweed liquid extract (TAM®) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants 10 (6): 1045. DOI: 10.3390/plants10061045
Atero‐Calvo S., Magro F., Masetti G., Navarro‐León E., Albacete A., Ruiz J.M. 2025. The effects of humic substances application on the phytohormone profile in Lactuca sativa L. Annals of Applied Biology 186 (2): 115–124. DOI: 10.1111/aab.12944
Atero-Calvo S., Magro F., Masetti G., Navarro-León E., Blasco B., Ruiz J.M. 2024. Salinity stress mitigation by radicular and foliar humic substances application in lettuce plants. Plant Growth Regulation 104 (1): 151–167. DOI: 10.1016/B978-0-443- 15884-1.00025-7
Bajpai S., Shukla P.S., Asiedu S., Pruski K., Prithiviraj B. 2019. A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry. The Plant Pathology Journal 35 (5): 406–416. DOI: 10.5423/PPJ.OA.03.2019.0066
Boutahiri S., Benrkia R., Tembeni B., Idowu O.E., Olatunji O.J. 2024. Effect of biostimulants on the chemical profile of food crops under normal and abiotic stress conditions. Current Plant Biology 40: 100410. DOI: 10.1016/j.cpb.2024.100410
Brogowski Z. 2000. Krzem w glebie i jego rola w żywieniu roślin. [Silicon in soil and its role in plant nutrition]. Advances in Agricultural Sciences/Postępy Nauk Rolniczych 47 (6): 9–16.
Calia C., García S.G., Ingrao C., Lagioia G., Ruta C., Secchi N., De Mastro G. 2025. Life cycle assessment of microbial plant biostimulant production for application in sustainable agricultural systems. Science of the Total Environment 981: 179610. DOI: 10.1016/j.scitotenv.2025.179610
Canellas L.P., da Silva R.M., Busato J.G., Olivares F.L. 2024. Humic substances and plant abiotic stress adaptation. Chemical and Biological Technologies in Agriculture 11 (1): 66. DOI: 10.1186/s40538-024-00575-z
Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A., Mazzei P., Piccolo A. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulture 196: 15–27. DOI: 10.1016/j.scienta.2015.09.013
Carbajal-Vázquez V.H., Gómez-Merino F.C., Alcántar-González E.G., Sánchez-García P., Trejo-Téllez L.I. 2022. Titanium increases the antioxidant activity and macronutrient concentration in tomato seedlings exposed to salinity in hydroponics. Plants 11 (8): 1036. DOI: 10.3390/plants11081036
Carmody N., Goñi O., Łangowski Ł., O’Connell S. 2020. Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Frontiers in Plant Science 11: 807. DOI: 10.3389/FPLS.2020.00807
Ceccarelli A.V., Miras-Moreno B., Buffagni V., Senizza B., Pii Y., Cardarelli M., Rouphael Y., Colla G., Lucini L. 2021. Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism. Plants 10: 326. DOI: 10.3390/plants10020326
Choi S., Colla G., Cardarelli M., Kim H.-J. 2022. Effects of plant-derived protein hydrolysates on yield, quality, and nitrogen use efficiency of greenhouse grown lettuce and tomato. Agronomy 12: 1018. DOI: 10.3390/plants10020326
Colla G., Cardarelli M., Bonini P., Rouphael Y. 2017. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 52 (9): 1214–1220. DOI: 10.21273/ HORTSCI12200-17
Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., Rouphael Y. 2015a. Protein hydrolysates as biostimulants in horticulture. Scientia Horticulture 196: 28–38. DOI: 10.1016/j.scienta.2015.08.037
Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M. 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science 5: 448. DOI: 10.3389/fpls.2014.00448
Colla G., Rouphael Y., Di Mattia E., El-Nakhel C., Cardarelli M. 2015b. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture 95: 1706–1715. DOI: 10.1002/jsfa.6875
Curá J.A., Franz D.R., Filosofía J.E., Balestrasse K.B., Burgueño L.E. 2017. Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5: 41. DOI: 10.3390/microorganisms5030041
De Melo B.A.G., Motta F.L., Santana M.H.A. 2016. Humic acids: structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering C 62: 967–974. DOI: 10.1016/j.msec.2015.12.001
Du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196: 3–14. DOI: 10.1016/j.scienta.2015.09.021
Du Jardin P., Brown P.H., DeJong T.M., Cassán F., Ferrante A., Fotopoulos V., Manganaris G., Carillo P. 2025. Unlocking the black box of plant biostimulants. Scientia Horticulturae 350: 114281. DOI: 10.1016/j.scienta.2025.114281
El Boukhari M.E.M., Barakate M., Drissi B., Bouhia Y., Lyamlouli K. 2023. Seaweed extract biostimulants differentially act in mitigating drought stress on faba bean (Vicia faba L.). Journal of Plant Growth Regulation 42 (9): 5642–5652. DOI: 10.1007/ s00344-023-10945-w
Ertani A., Schiavon M., Nardi S. 2017. Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicon L. in response to an alfalfa-protein hydrolysate using microarrays. Frontiers in Plant Science 8: 1159. DOI: 10.3389/ fpls.2017.01159
Esserti S., Smaili A., Rifai L.A., Koussa T., Makroum K., Belfaiza M., Kabil E.M., Faize L., Burgos L., Alburquerque N., Faize M. 2017. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. Journal of Applied Phycology 29: 1081–1093. DOI: 10.1007/s10811-016-0996-z
Farahi M.H., Aboutaleb A., Eshghi S., Dastyaran M., Yosefi F. 2013. Foliar application of humic acid on quantitative and qualitative characteristics of ‘Aromas’ strawberry in soilless culture. Agricultural Communications 1 (1): 13–16.
Francesca S., Najai S., Zhou R., Decros G., Cassan C., Delmas F., Ottosen C., Barone A., Manuela M. 2022. Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiology and Bio-chemistry 179: 32–43. DOI: 10.1016/j.plaphy.2022.03.012
Gemin L.G., Mógor Á.F., Amatussi J., De Lara G.B., Mógor G. 2022. Organic onion growth, yield and storage improved by foliar sprays of microalgae and fulvic acid as a natural biofertilizer. Bioscience Journal 38: e38045. DOI: 10.14393/BJ-v38n0a2022-58854
Gil-Ortiz R., Naranjo M.Á., Atares S., Vicente O. 2023. Antioxidant responses of water-stressed cherry tomato plants to natural biostimulants. Agronomy 13: 2314. DOI: 10.3390/agronomy13092314
Goel P., Dhingra M. 2021. Humic substances: prospects for use in agriculture and medicine. s. 1–21. W: Humic Substances (A. Makan, red.). IntechO-pen, London.
Hasanuzzaman M., Parvin K., Bardhan K., Nahar K., Anee T.I., Masud A.A.C., Fotopoulos V. 2021. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells 10: 2537. DOI: 10.3390/cells10102537
Hernández-Herrera R.M., Sánchez-Hernández C.V., Palmeros-Suárez P.A., Ocampo-Alvarez H., Santacruz-Ruvalcaba F., Meza- -Canales I.D., Becerril-Espinosa A. 2022. Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy 12 (10): 2495. DOI: 10.3390/agronomy12102495
Ibrahim E.A., Ebrahim N.E., Mohamed G.Z. 2024. Mitigation of water stress in broccoli by soil application of humic acid. Scientific Reports 14 (1): 2765. DOI: 10.1038/s41598-024-53012-4
İkiz B., Dasgan H.Y., Balik S., Kusvuran S., Gruda N.S. 2024. The use of biostimulants as a key to sustainable hydroponic lettuce farming under saline water stress. BMC Plant Biology 24: 808. DOI: 10.1186/s12870-024-05520-8
Jayaraman J., Norrie J., Punja Z.K. 2011. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. Journal of Applied Phycology 23 (3): 353–361. DOI: 10.1007/s10811-010-9547-1
Kadoglidou K.I., Anthimidou E., Krommydas K., Papa E., Karapatzak E., Tsivelika N., Irakli M., Mellidon I., Xanthopoulou A., Kalivas A. 2025. Effect of biostimulants on drought tolerance of greenhouse-grown tomato. Horticulturae 11 (6): 601. DOI: 10.3390/horticulturae11060601
Kałużewicz A., Krzesiński W., Spiżewski T., Zaworska A. 2017. Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45 (1): 197–202. DOI: 10.15835/nbha45110529
Kaya C., Akram N.A., Ashraf M., Alyemeni M.N., Ahmad P. 2020. Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. Journal of Biotechnology 316: 35–45. DOI: 10.1016/j.jbiotec.2020.04.008
Keskin B., Akhoundnejad Y., Dasgan H.Y., Gruda N.S. 2025. Fulvic acid, amino acids, and vermicompost enhanced yield and improved nutrient profile of soilless iceberg lettuce. Plants 14 (4): 609. DOI: 10.3390/plants14040609
Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A.T., Craigie J.S., Norrie J., Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28: 386–399. DOI: 10.1007/s00344-009-9103-x
Kıran S., Furtana G.B., Talhouni M., Ellialtıoğlu S.S. 2019. Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia Campinas 78 (4): 490–497. DOI: 10.1590/1678-4499.20190057
Kleiber T., Markiewicz B. 2013. Application of “Tytanit” in greenhouse tomato growing. Acta Scientiarum Polonorum Hortorum Cultus 12 (3): 117–126.
Kumar G., Nanda S., Singh S.K., Kumar S., Singh D., Singh B.N., Mukherjee A. 2024. Seaweed extracts: enhancing plant resilience to biotic and abiotic stresses. Frontiers in Marine Science 11: 1457500. DOI: 10.3389/fmars.2024.1457500
Lai X., Yang X., Rao S., Zhu Z., Cong X., Ye J., Zhang W., Liao Y., Cheng S., Xu F. 2022. Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants. Plant Biology 24 (6): 913–919. DOI: 10.1111/plb.13435
Lisiecka J., Knaflewski M., Spiżewski T., Frąszczak B., Kałużewicz A., Krzesiński W. 2011. The effect on animal protein hydrolysate on quantity and quality of strawberry daughter plants cv. ’Elsanta’. Acta Scientiarum Polonorum Hortorum Cultus 10 (1): 31–40.
Lüdtke A.C., Dick D.P., Morosino L., Kraemer V. 2021. Productivity of lettuce in greenhouse as affected by humic and fulvic acids application in association to mineral fertilizer. Horticultura Brasileira 39: 444–450. DOI: 10.1590/s0102-0536-20210414
Lyu S., Wei X., Chen J., Wang C., Wang X., Pan D. 2017. Titanium as a beneficial element for crop production. Frontiers in Plant Science 8: 597. DOI: 10.3389/fpls.2017.00597
Ma Y., Dias M.C., Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science 11: 591911. DOI: 10.3389/fpls.2020.591911
Ma Y., Freitas H., Dias M.C. 2022. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front Plant Sciences 13: 1024243. DOI: 10.3389/fpls.2022.1024243
Mannino G. 2023. A new era of sustainability: plant biostimulants. International Journal of Molecular Sciences 24 (22): 16329. DOI: 10.3390/ijms242216329
Mindari W., Sasongko P.E., Kusuma Z., Syekhfani, Aini N. 2018. Efficiency of various sources and doses of humic acid on physical and chemical properties of saline soil and growth and yield of rice. AIP Conference Proceedings 2019: 030001. DOI: 10.1063/1.5061854
Morcillo R.J., Manzanera M. 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11: 337. DOI: 10.3390/metabo11060337
Mosa W.F., Sas-Paszt L., Głuszek S., Górnik K., Anjum M.A., Saleh A.A., Abada H.S., Awad R.M. 2023. Effect of some biostimulants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 9: 32. DOI: 10.3390/ horticulturae9010032
Muhie S.H. 2023. Plant biostimulants in organic horticulture: a review. Journal of Plant Growth Regulation 42 (5): 2698–2710. DOI: 10.1007/s00344-022-10738-7
Muhorakeye M.C., Namikoye E.S., Khamis F.M., Wanjohi W., Akutse K.S. 2024. Biostimulant and antagonistic potential of endophytic fungi against fusarium wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici. Scientific Reports 14: 15365. DOI: 10.1038/s41598-024-66101-1
Nardi S., Ertani A., Francioso O. 2017. Soil-root cross-talking: the role of humic substances. Journal of Plant Nutrition and Soil Science 180: 5–13. DOI: 10.1002/jpln.201600348
Nardi S., Pizzeghello D., Muscolo A., Vianello A. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry 34: 1527–1536. DOI: 10.1016/S0038-0717(02)00174-8
Novello G., Cesaro P., Bona E., Massa N., Gosetti F., Scarafoni A., Todeschini V., Berta G., Lingua G., Gamalero E. 2021. The effects of plant growth-promoting bacteria with biostimulant features on the growth of a local onion cultivar and a commercial zucchini variety. Agronomy 11: 888. DOI: 10.3390/agronomy11050888
Ojuederie O.B., Olanrewaju O.S., Babalola O.O. 2019. Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy 9 (11): 712. DOI: 10.3390/agronomy9110712
Patkowska E. 2021. Biostimulants managed fungal phytopathogens and enhanced activity of beneficial microorganisms in rhizosphere of scorzonera (Scorzonera hispanica L.). Agriculture 11: 347. DOI: 10.3390/agriculture11040347
Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., Miras Moreno M.B., Reynaud H., Canaguier R., Trtílek M., Panzarova K., Colla G. 2019. A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Frontiers in Plant Science 10: 493. DOI: 10.3389/fpls.2019.00493
Pellegrini M., Spera D.M., Ercole C., Del Gallo M. 2021. Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: effects on plants, soil and the autochthonous microbial community. Microorganisms 9 (3): 639. DOI: 10.3390/microorganisms9030639
Pilon-Smits E.A., Quinn C.F., Tapken W., Malagoli M., Schiavon M. 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology 12: 267–274.
Qin K., Leskovar D.I. 2020. Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture 10 (7): 254. DOI: 10.3390/agriculture10070254
Rai N., Rai S.P., Sarma B.K. 2021. Prospects for abiotic stress tolerance in crops utilizing phyto- and bio-stimulants. Frontiers in Sustainable Food Systems 5: 754853. DOI: 10.3389/fsufs.2021.754853
Rouphael Y., Colla G., Hoagland L., Giordano M., El-Nakhel C., Cardarelli M. 2021. Vegetal-protein hydrolysates based microgranule enhances growth, mineral content, and quality traits of vegetable transplants. Scientia Horticulturae 290: 110554. DOI: 10.1016/j.scienta.2021.110554
Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2019/1009 z dnia 5 czerwca 2019 r. https://eur-lex.europa.eu/eli/ reg/2019/1009/oj
Samuels L.J., Setati M.E., Blancquaert E.H. 2022. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants 11 (3): 348. DOI: 10.3390/plants11030348
Sánchez-Montesinos B., Santos M., Moreno-Gavíra A., Marín-Rodulfo T., Gea F.J., Diánez F. 2021. Biological control of fungal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. Journal of Fungi 7: 598. DOI: 10.3390/jof7080598
Sangiorgio D., Cellini A., Spinelli F., Donati I. 2023. Promoting strawberry (Fragaria × ananassa) stress resistance, growth, and yield using native bacterial biostimulants. Agronomy 13 (2): 529. DOI: 10.3390/agronomy13020529
Savvas D., Magkana P., Yfantopoulos D., Kalozoumis P., Ntatsi G. 2024. Growth and nutritional responses of zucchini squash to a novel consortium of six Bacillus sp. strains used as a biostimulant. Agronomy 14 (2): 362. DOI: 10.3390/agronomy14020362
Shukla P.S., Borza T., Critchley A.T., Prithiviraj B. 2021. Seaweed-based compounds and products for sustainable protection against plant pathogens. Marine Drugs 19: 59. DOI: 10.3390/md19020059
Singhal R.K., Fahad S., Kumar P., Choyal P., Javed T., Jinger D., Singh P., Saha D., Prathibha M.D., Bose B., Akash H., Gupta N.K., Sodani R., Dev D., Suthar D.L., Liu K., Harrison M.T., Saud S., Shah A.N., Nawaz T. 2023. Beneficial elements: new players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation 100 (2): 237265. DOI: 10.1007/s10725-022-00843-8
Soussani F.E., Boutasknit A., Ben-Laouane R., Benkirane R. 2023. Arbuscular mycorrhizal fungi and compost-based biostimulants enhance fitness, physiological responses, yield, and quality traits of drought-stressed tomato plants. Plants 12: 1856. DOI: 10.3390/plants12091856
Trejo-Téllez L.I., Gómez-Merino F.C. 2023. Beneficial elements: novel players in plant biology for innovative crop production. Frontiers in Plant Science 14: 1303462. DOI: 10.3389/fpls.2023.1303462
Trejo Valencia R., Sánchez Acosta L., Fortis Hernández M., Preciado Rangel P., Gallegos Robles M. Á., Antonio Cruz R.D.C., Vázquez Vázquez C. 2018. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy 8: 264. DOI: 10.3390/agronomy8110264
Woo S.L., Pepe O. 2018. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science 9: 1801. DOI: 10.3389/fpls.2018.01801
Wu S., Li R., Peng S., Liu Q., Zhu X. 2017. Effect of humic acid on transformation of soil heavy metals. IOP Conference Series: Materials Science and Engineering 207: 012089. DOI: 10.1088/1757-899X/207/1/012089
Xu X., Chen Z., Wang W., Pan K. 2025. The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions. Scientific Reports 15 (1): 10363. DOI: 10.1038/s41598-025-95172-x
Xu L., Naylor D., Dong Z., Simmons T., Pierroz G., Hixson K.K., Kim Y.-M., Zink E.M., Engbrecht K.M., Wang Y., Gao C., DeGraaf S., Madera M.A., Sievert J.A., Hollingsworth J., Birdseye D., Scheller H.V., Hutmacher R., Dahlberg J., Jansson C., Taylor J.W., Lemaux P.G., Coleman-Derr D. 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences 115: E4284–E4293. DOI: 10.1073/pnas.1717308115
Yildirim E., Ekinci M., Turan M., Ağar G., Dursun A., Kul R., Alim Z., Argin S. 2021. Humic + fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Scientific Reports 11 (1): 8040. DOI: 10.1038/ s41598-021-86991-9
Zamljen T., Grohar M.C., Slatnar A. 2024a. Effects of pre- and post-transplantation humic acid biostimulant treatment and harvest date on yield quantity and quality parameters of sweet peppers (Capsicum annuum L.). Scientia Horticulturae 338: 113747. DOI: 10.1016/j.scienta.2024.113747
Zamljen T., Šircelj H., Veberič R., Hudina M., Slatnar A. 2024b. Impact of two brown seaweed (Ascophyllum nodosum L.) biostimulants on the quantity and quality of yield in cucumber (Cucumis sativus L.). Foods 13 (3): 401. DOI: 10.3390/foods130304
Zhang P., Li X., Dong J. 2021. Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Frontiers in Plant Science 12: 736613. DOI: 10.3389/fpls.2021.736613 |
Progress in Plant Protection (2025) : 0-0 |
Data pierwszej publikacji on-line: 2025-09-30 09:49:48 |
http://dx.doi.org/10.14199/ppp-2025-023 |
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy |