Progress in Plant Protection

Zastosowanie biostymulatorów w ogrodnictwie
Application of biostimulants in horticulture

Alina Kałużewicz, e-mail: alina.kaluzewicz@up.poznan.pl

Uniwersytet Przyrodniczy w Poznaniu, Dąbrowskiego 159, 60-594 Poznań, Polska
Streszczenie

Do grupy środków nazywanych biostymulatorami stosowanymi w ogrodnictwie czy rolnictwie należą preparaty zawierające w swoim składzie ekstrakty z alg morskich, roślinne oraz zwierzęce hydrolizaty białkowe, związki humusowe, korzystne bakterie i grzyby oraz ko­rzystne mikroelementy. Celem niniejszego opracowania jest przedstawienie efektów działania biostymulatorów należących do różnych grup. Efekty te obejmują zarówno wzrost i plonowanie roślin, poprawę ich odżywienia, wpływ na zawartość składników bioaktywnych, ochronę przed stresem spowodowanym czynnikami abiotycznymi (np. suszą czy niską temperaturą) lub biotycznymi (np. patogenami bakteryjnymi lub grzybowymi). Stosowanie biostymulatorów stanowi ważny element nowoczesnej uprawy roślin ogrodniczych, która dąży do poprawy wzrostu, plonowania i jakości roślin, przy jednoczesnym ograniczeniu syntetycznych agrochemikaliów.

 

The group of substances known as biostimulants used in horticulture and agriculture includes preparations containing seaweed extracts, plant and animal protein hydrolysates, humic compounds, beneficial bacteria and fungi, and beneficial elements. The aim of this study is to provide a broad overview of the effects of biostimulants belonging to the above-mentioned groups. These effects include plant growth and yield, improved nutrition, influence on the content of bioactive components, and protection against stress and bacterial and fungal pathogens. The use of biostimulants is an important element of modern horticultural plant cultivation, which aims to improve plant growth, yield and quality while reducing the use of chemicals.

Słowa kluczowe
biostymulatory; ekstrakty z alg morskich; hydrolizaty białkowe; kwasy humusowe i fulwowe; mikroorganizmy; mikro­elementy; biostimulants; seaweed extracts; protein hydrolysates; humic and fulvic acids; microorganisms; microelements
Referencje

Abbas M., Anwar J., Zafar-ul-Hye M., Iqbal Khan R., Saleem M., Rahi A.A., Danish S., Datta R. 2020. Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae 6 (2): 28. DOI: 10.3390/horticulturae6020028

 

Agarwal P.K., Dangariya M., Agarwal P. 2021. Seaweed extracts: potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research 58: 102363. DOI: 10.1016/j.algal.2021.102363

 

Al-Saif A.M., Sas-Paszt L., Awad R.M., Mosa W.F. 2023. Apricot (Prunus armeniaca) performance under foliar application of humic acid, brassinosteroids, and seaweed extract. Horticulturae 9: 519. DOI: 10.3390/horticulturae9040519

 

Ali O., Ramsubhag A., Jayaraman J. 2019. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One 14 (5): e0216710. DOI: 10.1371/journal.pone.0216710

 

Ambros E., Kotsupiy O., Karpova E., Panova U., Chernonosov A., Trofimova E., Goldenberg B. 2023. A biostimulant based on silicon chelates enhances growth and modulates physiological responses of in-vitro-derived strawberry plants to in vivo condi­tions. Plants 12 (24): 4193. DOI: 10.3390/plants12244193

 

Amerian M., Palangi A., Gohari G., Ntatsi G. 2024. Humic acid and grafting as sustainable agronomic practices for increased growth and secondary metabolism in cucumber subjected to salt stress. Scientific Reports 14 (1): 15883. DOI: 10.1038/s41598- 024-66677-8

 

Amiri Forotaghe Z., Souri M.K., Ghanbari Jahromi M., Mohammadi Torkashvand A. 2022. Influence of humic acid applica­tion on onion growth characteristics under water deficit conditions. Journal of Plant Nutrition 45 (7): 1030–1040. DOI: 10.1080/01904167.2021.1994604

 

Amirkhani M., Netravali A., Huang W., Taylor A.G. 2016. Investigation of soy protein-based biostimulant seed coating for broccoli seedling and plant growth enhancement. Horticultural Science 51: 1121–1126. DOI: 10.21273/HORTSCI10913-16

 

Ashour M., Hassan S.M., Elshobary M.E., Ammar G.A., Gaber A., Alsanie W.F., Tageldein Mansour A., El-Shenody R. 2021. Impact of commercial seaweed liquid extract (TAM®) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants 10 (6): 1045. DOI: 10.3390/plants10061045

 

Atero‐Calvo S., Magro F., Masetti G., Navarro‐León E., Albacete A., Ruiz J.M. 2025. The effects of humic substances application on the phytohormone profile in Lactuca sativa L. Annals of Applied Biology 186 (2): 115–124. DOI: 10.1111/aab.12944

 

Atero-Calvo S., Magro F., Masetti G., Navarro-León E., Blasco B., Ruiz J.M. 2024. Salinity stress mitigation by radicular and foliar humic substances application in lettuce plants. Plant Growth Regulation 104 (1): 151–167. DOI: 10.1016/B978-0-443- 15884-1.00025-7

 

Bajpai S., Shukla P.S., Asiedu S., Pruski K., Prithiviraj B. 2019. A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry. The Plant Pathology Journal 35 (5): 406–416. DOI: 10.5423/PPJ.OA.03.2019.0066

 

Boutahiri S., Benrkia R., Tembeni B., Idowu O.E., Olatunji O.J. 2024. Effect of biostimulants on the chemical profile of food crops under normal and abiotic stress conditions. Current Plant Biology 40: 100410. DOI: 10.1016/j.cpb.2024.100410

 

Brogowski Z. 2000. Krzem w glebie i jego rola w żywieniu roślin. [Silicon in soil and its role in plant nutrition]. Advances in Ag­ricultural Sciences/Postępy Nauk Rolniczych 47 (6): 9–16.

 

Calia C., García S.G., Ingrao C., Lagioia G., Ruta C., Secchi N., De Mastro G. 2025. Life cycle assessment of microbial plant biostimulant production for application in sustainable agricultural systems. Science of the Total Environment 981: 179610. DOI: 10.1016/j.scitotenv.2025.179610

 

Canellas L.P., da Silva R.M., Busato J.G., Olivares F.L. 2024. Humic substances and plant abiotic stress adaptation. Chemical and Biological Technologies in Agriculture 11 (1): 66. DOI: 10.1186/s40538-024-00575-z

 

Canellas L.P., Olivares F.L., Aguiar N.O., Jones D.L., Nebbioso A., Mazzei P., Piccolo A. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulture 196: 15–27. DOI: 10.1016/j.scienta.2015.09.013

 

Carbajal-Vázquez V.H., Gómez-Merino F.C., Alcántar-González E.G., Sánchez-García P., Trejo-Téllez L.I. 2022. Titanium in­creases the antioxidant activity and macronutrient concentration in tomato seedlings exposed to salinity in hydroponics. Plants 11 (8): 1036. DOI: 10.3390/plants11081036

 

Carmody N., Goñi O., Łangowski Ł., O’Connell S. 2020. Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Frontiers in Plant Science 11: 807. DOI: 10.3389/FPLS.2020.00807

 

Ceccarelli A.V., Miras-Moreno B., Buffagni V., Senizza B., Pii Y., Cardarelli M., Rouphael Y., Colla G., Lucini L. 2021. Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism. Plants 10: 326. DOI: 10.3390/plants10020326

 

Choi S., Colla G., Cardarelli M., Kim H.-J. 2022. Effects of plant-derived protein hydrolysates on yield, quality, and nitrogen use efficiency of greenhouse grown lettuce and tomato. Agronomy 12: 1018. DOI: 10.3390/plants10020326

 

Colla G., Cardarelli M., Bonini P., Rouphael Y. 2017. Foliar applications of protein hydrolysate, plant and seaweed extracts in­crease yield but differentially modulate fruit quality of greenhouse tomato. HortScience 52 (9): 1214–1220. DOI: 10.21273/ HORTSCI12200-17

 

Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., Rouphael Y. 2015a. Protein hydrolysates as biostimulants in horticulture. Scientia Horticulture 196: 28–38. DOI: 10.1016/j.scienta.2015.08.037

 

Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M. 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science 5: 448. DOI: 10.3389/fpls.2014.00448

 

Colla G., Rouphael Y., Di Mattia E., El-Nakhel C., Cardarelli M. 2015b. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture 95: 1706–1715. DOI: 10.1002/jsfa.6875

 

Curá J.A., Franz D.R., Filosofía J.E., Balestrasse K.B., Burgueño L.E. 2017. Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 5: 41. DOI: 10.3390/microorganisms5030041

 

De Melo B.A.G., Motta F.L., Santana M.H.A. 2016. Humic acids: structural properties and multiple functionalities for novel tech­nological developments. Materials Science and Engineering C 62: 967–974. DOI: 10.1016/j.msec.2015.12.001

 

Du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196: 3–14. DOI: 10.1016/j.scienta.2015.09.021

 

Du Jardin P., Brown P.H., DeJong T.M., Cassán F., Ferrante A., Fotopoulos V., Manganaris G., Carillo P. 2025. Unlocking the black box of plant biostimulants. Scientia Horticulturae 350: 114281. DOI: 10.1016/j.scienta.2025.114281

 

El Boukhari M.E.M., Barakate M., Drissi B., Bouhia Y., Lyamlouli K. 2023. Seaweed extract biostimulants differentially act in mitigating drought stress on faba bean (Vicia faba L.). Journal of Plant Growth Regulation 42 (9): 5642–5652. DOI: 10.1007/ s00344-023-10945-w

 

Ertani A., Schiavon M., Nardi S. 2017. Transcriptome-wide identification of differentially expressed genes in Solanum lycoper­sicon L. in response to an alfalfa-protein hydrolysate using microarrays. Frontiers in Plant Science 8: 1159. DOI: 10.3389/ fpls.2017.01159

 

Esserti S., Smaili A., Rifai L.A., Koussa T., Makroum K., Belfaiza M., Kabil E.M., Faize L., Burgos L., Alburquerque N., Faize M. 2017. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. Journal of Applied Phycology 29: 1081–1093. DOI: 10.1007/s10811-016-0996-z

 

Farahi M.H., Aboutaleb A., Eshghi S., Dastyaran M., Yosefi F. 2013. Foliar application of humic acid on quantitative and qualita­tive characteristics of ‘Aromas’ strawberry in soilless culture. Agricultural Communications 1 (1): 13–16.

 

Francesca S., Najai S., Zhou R., Decros G., Cassan C., Delmas F., Ottosen C., Barone A., Manuela M. 2022. Phenotyping to dis­sect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiology and Bio-chemistry 179: 32–43. DOI: 10.1016/j.plaphy.2022.03.012

 

Gemin L.G., Mógor Á.F., Amatussi J., De Lara G.B., Mógor G. 2022. Organic onion growth, yield and storage improved by foliar sprays of microalgae and fulvic acid as a natural biofertilizer. Bioscience Journal 38: e38045. DOI: 10.14393/BJ-v38n0a2022-58854

 

Gil-Ortiz R., Naranjo M.Á., Atares S., Vicente O. 2023. Antioxidant responses of water-stressed cherry tomato plants to natural biostimulants. Agronomy 13: 2314. DOI: 10.3390/agronomy13092314

 

Goel P., Dhingra M. 2021. Humic substances: prospects for use in agriculture and medicine. s. 1–21. W: Humic Substances (A. Makan, red.). IntechO-pen, London.

 

Hasanuzzaman M., Parvin K., Bardhan K., Nahar K., Anee T.I., Masud A.A.C., Fotopoulos V. 2021. Biostimulants for the regula­tion of reactive oxygen species metabolism in plants under abiotic stress. Cells 10: 2537. DOI: 10.3390/cells10102537

 

Hernández-Herrera R.M., Sánchez-Hernández C.V., Palmeros-Suárez P.A., Ocampo-Alvarez H., Santacruz-Ruvalcaba F., Meza- -Canales I.D., Becerril-Espinosa A. 2022. Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy 12 (10): 2495. DOI: 10.3390/agronomy12102495

 

Ibrahim E.A., Ebrahim N.E., Mohamed G.Z. 2024. Mitigation of water stress in broccoli by soil application of humic acid. Scien­tific Reports 14 (1): 2765. DOI: 10.1038/s41598-024-53012-4

 

İkiz B., Dasgan H.Y., Balik S., Kusvuran S., Gruda N.S. 2024. The use of biostimulants as a key to sustainable hydroponic lettuce farming under saline water stress. BMC Plant Biology 24: 808. DOI: 10.1186/s12870-024-05520-8

 

Jayaraman J., Norrie J., Punja Z.K. 2011. Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal dis­eases in greenhouse cucumber. Journal of Applied Phycology 23 (3): 353–361. DOI: 10.1007/s10811-010-9547-1

 

Kadoglidou K.I., Anthimidou E., Krommydas K., Papa E., Karapatzak E., Tsivelika N., Irakli M., Mellidon I., Xanthopoulou A., Kalivas A. 2025. Effect of biostimulants on drought tolerance of greenhouse-grown tomato. Horticulturae 11 (6): 601. DOI: 10.3390/horticulturae11060601

 

Kałużewicz A., Krzesiński W., Spiżewski T., Zaworska A. 2017. Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45 (1): 197–202. DOI: 10.15835/nbha45110529

 

Kaya C., Akram N.A., Ashraf M., Alyemeni M.N., Ahmad P. 2020. Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. Journal of Biotechnology 316: 35–45. DOI: 10.1016/j.jbiotec.2020.04.008

 

Keskin B., Akhoundnejad Y., Dasgan H.Y., Gruda N.S. 2025. Fulvic acid, amino acids, and vermicompost enhanced yield and improved nutrient profile of soilless iceberg lettuce. Plants 14 (4): 609. DOI: 10.3390/plants14040609

 

Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A.T., Craigie J.S., Norrie J., Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28: 386–399. DOI: 10.1007/s00344-009-9103-x

 

Kıran S., Furtana G.B., Talhouni M., Ellialtıoğlu S.S. 2019. Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia Campinas 78 (4): 490–497. DOI: 10.1590/1678-4499.20190057

 

Kleiber T., Markiewicz B. 2013. Application of “Tytanit” in greenhouse tomato growing. Acta Scientiarum Polonorum Hortorum Cultus 12 (3): 117–126.

 

Kumar G., Nanda S., Singh S.K., Kumar S., Singh D., Singh B.N., Mukherjee A. 2024. Seaweed extracts: enhancing plant resil­ience to biotic and abiotic stresses. Frontiers in Marine Science 11: 1457500. DOI: 10.3389/fmars.2024.1457500

 

Lai X., Yang X., Rao S., Zhu Z., Cong X., Ye J., Zhang W., Liao Y., Cheng S., Xu F. 2022. Advances in physiological mechanisms of selenium to improve heavy metal stress tolerance in plants. Plant Biology 24 (6): 913–919. DOI: 10.1111/plb.13435

 

Lisiecka J., Knaflewski M., Spiżewski T., Frąszczak B., Kałużewicz A., Krzesiński W. 2011. The effect on animal protein hy­drolysate on quantity and quality of strawberry daughter plants cv. ’Elsanta’. Acta Scientiarum Polonorum Hortorum Cultus 10 (1): 31–40.

 

Lüdtke A.C., Dick D.P., Morosino L., Kraemer V. 2021. Productivity of lettuce in greenhouse as affected by humic and fulvic acids application in association to mineral fertilizer. Horticultura Brasileira 39: 444–450. DOI: 10.1590/s0102-0536-20210414

 

Lyu S., Wei X., Chen J., Wang C., Wang X., Pan D. 2017. Titanium as a beneficial element for crop production. Frontiers in Plant Science 8: 597. DOI: 10.3389/fpls.2017.00597

 

Ma Y., Dias M.C., Freitas H. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science 11: 591911. DOI: 10.3389/fpls.2020.591911

 

Ma Y., Freitas H., Dias M.C. 2022. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front Plant Sci­ences 13: 1024243. DOI: 10.3389/fpls.2022.1024243

 

Mannino G. 2023. A new era of sustainability: plant biostimulants. International Journal of Molecular Sciences 24 (22): 16329. DOI: 10.3390/ijms242216329

 

Mindari W., Sasongko P.E., Kusuma Z., Syekhfani, Aini N. 2018. Efficiency of various sources and doses of humic acid on physical and chemical properties of saline soil and growth and yield of rice. AIP Conference Proceedings 2019: 030001. DOI: 10.1063/1.5061854

 

Morcillo R.J., Manzanera M. 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11: 337. DOI: 10.3390/metabo11060337

 

Mosa W.F., Sas-Paszt L., Głuszek S., Górnik K., Anjum M.A., Saleh A.A., Abada H.S., Awad R.M. 2023. Effect of some biostimu­lants on the vegetative growth, yield, fruit quality attributes and nutritional status of apple. Horticulturae 9: 32. DOI: 10.3390/ horticulturae9010032

 

Muhie S.H. 2023. Plant biostimulants in organic horticulture: a review. Journal of Plant Growth Regulation 42 (5): 2698–2710. DOI: 10.1007/s00344-022-10738-7

 

Muhorakeye M.C., Namikoye E.S., Khamis F.M., Wanjohi W., Akutse K.S. 2024. Biostimulant and antagonistic potential of en­dophytic fungi against fusarium wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici. Scientific Reports 14: 15365. DOI: 10.1038/s41598-024-66101-1

 

Nardi S., Ertani A., Francioso O. 2017. Soil-root cross-talking: the role of humic substances. Journal of Plant Nutrition and Soil Science 180: 5–13. DOI: 10.1002/jpln.201600348

 

Nardi S., Pizzeghello D., Muscolo A., Vianello A. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry 34: 1527–1536. DOI: 10.1016/S0038-0717(02)00174-8

 

Novello G., Cesaro P., Bona E., Massa N., Gosetti F., Scarafoni A., Todeschini V., Berta G., Lingua G., Gamalero E. 2021. The effects of plant growth-promoting bacteria with biostimulant features on the growth of a local onion cultivar and a commercial zucchini variety. Agronomy 11: 888. DOI: 10.3390/agronomy11050888

 

Ojuederie O.B., Olanrewaju O.S., Babalola O.O. 2019. Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy 9 (11): 712. DOI: 10.3390/agronomy9110712

 

Patkowska E. 2021. Biostimulants managed fungal phytopathogens and enhanced activity of beneficial microorganisms in rhizos­phere of scorzonera (Scorzonera hispanica L.). Agriculture 11: 347. DOI: 10.3390/agriculture11040347

 

Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., Miras Moreno M.B., Reynaud H., Canaguier R., Trtílek M., Panzarova K., Colla G. 2019. A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Frontiers in Plant Science 10: 493. DOI: 10.3389/fpls.2019.00493

 

Pellegrini M., Spera D.M., Ercole C., Del Gallo M. 2021. Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: effects on plants, soil and the autochthonous microbial community. Microorganisms 9 (3): 639. DOI: 10.3390/micro­organisms9030639

 

Pilon-Smits E.A., Quinn C.F., Tapken W., Malagoli M., Schiavon M. 2009. Physiological functions of beneficial elements. Current Opinion in Plant Biology 12: 267–274.

 

Qin K., Leskovar D.I. 2020. Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture 10 (7): 254. DOI: 10.3390/agriculture10070254

 

Rai N., Rai S.P., Sarma B.K. 2021. Prospects for abiotic stress tolerance in crops utilizing phyto- and bio-stimulants. Frontiers in Sustainable Food Systems 5: 754853. DOI: 10.3389/fsufs.2021.754853

 

Rouphael Y., Colla G., Hoagland L., Giordano M., El-Nakhel C., Cardarelli M. 2021. Vegetal-protein hydrolysates based micro­granule enhances growth, mineral content, and quality traits of vegetable transplants. Scientia Horticulturae 290: 110554. DOI: 10.1016/j.scienta.2021.110554

 

Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2019/1009 z dnia 5 czerwca 2019 r. https://eur-lex.europa.eu/eli/ reg/2019/1009/oj

 

Samuels L.J., Setati M.E., Blancquaert E.H. 2022. Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants 11 (3): 348. DOI: 10.3390/plants11030348

 

Sánchez-Montesinos B., Santos M., Moreno-Gavíra A., Marín-Rodulfo T., Gea F.J., Diánez F. 2021. Biological control of fun­gal diseases by Trichoderma aggressivum f. europaeum and its compatibility with fungicides. Journal of Fungi 7: 598. DOI: 10.3390/jof7080598

 

Sangiorgio D., Cellini A., Spinelli F., Donati I. 2023. Promoting strawberry (Fragaria × ananassa) stress resistance, growth, and yield using native bacterial biostimulants. Agronomy 13 (2): 529. DOI: 10.3390/agronomy13020529

 

Savvas D., Magkana P., Yfantopoulos D., Kalozoumis P., Ntatsi G. 2024. Growth and nutritional responses of zucchini squash to a novel consortium of six Bacillus sp. strains used as a biostimulant. Agronomy 14 (2): 362. DOI: 10.3390/agronomy14020362

 

Shukla P.S., Borza T., Critchley A.T., Prithiviraj B. 2021. Seaweed-based compounds and products for sustainable protection against plant pathogens. Marine Drugs 19: 59. DOI: 10.3390/md19020059

 

Singhal R.K., Fahad S., Kumar P., Choyal P., Javed T., Jinger D., Singh P., Saha D., Prathibha M.D., Bose B., Akash H., Gup­ta N.K., Sodani R., Dev D., Suthar D.L., Liu K., Harrison M.T., Saud S., Shah A.N., Nawaz T. 2023. Beneficial elements: new players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation 100 (2): 237265. DOI: 10.1007/s10725-022-00843-8

 

Soussani F.E., Boutasknit A., Ben-Laouane R., Benkirane R. 2023. Arbuscular mycorrhizal fungi and compost-based biostimulants enhance fitness, physiological responses, yield, and quality traits of drought-stressed tomato plants. Plants 12: 1856. DOI: 10.3390/plants12091856

 

Trejo-Téllez L.I., Gómez-Merino F.C. 2023. Beneficial elements: novel players in plant biology for innovative crop production. Frontiers in Plant Science 14: 1303462. DOI: 10.3389/fpls.2023.1303462

 

Trejo Valencia R., Sánchez Acosta L., Fortis Hernández M., Preciado Rangel P., Gallegos Robles M. Á., Antonio Cruz R.D.C., Vázquez Vázquez C. 2018. Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy 8: 264. DOI: 10.3390/agronomy8110264

 

Woo S.L., Pepe O. 2018. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science 9: 1801. DOI: 10.3389/fpls.2018.01801

 

Wu S., Li R., Peng S., Liu Q., Zhu X. 2017. Effect of humic acid on transformation of soil heavy metals. IOP Conference Series: Materials Science and Engineering 207: 012089. DOI: 10.1088/1757-899X/207/1/012089

 

Xu X., Chen Z., Wang W., Pan K. 2025. The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions. Scientific Reports 15 (1): 10363. DOI: 10.1038/s41598-025-95172-x

 

Xu L., Naylor D., Dong Z., Simmons T., Pierroz G., Hixson K.K., Kim Y.-M., Zink E.M., Engbrecht K.M., Wang Y., Gao C., DeGraaf S., Madera M.A., Sievert J.A., Hollingsworth J., Birdseye D., Scheller H.V., Hutmacher R., Dahlberg J., Jansson C., Taylor J.W., Lemaux P.G., Coleman-Derr D. 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences 115: E4284–E4293. DOI: 10.1073/pnas.1717308115

 

Yildirim E., Ekinci M., Turan M., Ağar G., Dursun A., Kul R., Alim Z., Argin S. 2021. Humic + fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Scientific Reports 11 (1): 8040. DOI: 10.1038/ s41598-021-86991-9

 

Zamljen T., Grohar M.C., Slatnar A. 2024a. Effects of pre- and post-transplantation humic acid biostimulant treatment and harvest date on yield quantity and quality parameters of sweet peppers (Capsicum annuum L.). Scientia Horticulturae 338: 113747. DOI: 10.1016/j.scienta.2024.113747

 

Zamljen T., Šircelj H., Veberič R., Hudina M., Slatnar A. 2024b. Impact of two brown seaweed (Ascophyllum nodosum L.) biostimulants on the quantity and quality of yield in cucumber (Cucumis sativus L.). Foods 13 (3): 401. DOI: 10.3390/foods130304

 

Zhang P., Li X., Dong J. 2021. Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Frontiers in Plant Science 12: 736613. DOI: 10.3389/fpls.2021.736613

Progress in Plant Protection (2025) : 0-0
Data pierwszej publikacji on-line: 2025-09-30 09:49:48
http://dx.doi.org/10.14199/ppp-2025-023
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy