Progress in Plant Protection

Wpływ mikroorganizmów i olejku tatarakowego (Acorus calamus L.) na zachowanie izofetamidu w sałacie (Lactuca sativa L.)
The influence of microorganisms and calamus oil (Acorus calamus L.) on the behavior of isofetamid in lettuce (Lactuca sativa L.)

Weronika Piątek, e-mail: w.rogowska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska
Streszczenie

Celem badania było określenie wpływu czynników biologicznych – mikroorganizmów (bakterii Pseudomonas spp. i drożdży Saccharo­myces cerevisiae) oraz tatarakowego olejku eterycznego (Acorus calamus L.), stosowanych łącznie lub oddzielnie, na zachowanie się izofetamidu w sałacie (Lactuca sativa L.). Sałatę poddano działaniu fungicydu zawierającego izofetamid (3,6 mg/roślina), a po upływie2 godzin przeprowadzono zabiegi: wariant 1 – olejek tatarakowy (12%), wariant 2 – olejek tatarakowy (12%) + Pseudomonas (106 jtk/ml), wariant 3 – olejek tatarakowy (12%) + Saccharomyces cerevisiae (106 jtk/ml). Grupę kontrolną stanowiły rośliny sałaty poddane jedynie działaniu izofetamidu. Po aplikacji izofetamidu, oznaczono jego stężenie za pomocą chromatografii cieczowej sprężonej z tandemową spektrometrią mas (LC-MS/MS) i wyznaczono dynamiki zanikania tego związku w liściach sałaty. Analiza wykładniczych modeli rozkładu potwierdziła wpływ czynników biologicznych na tempo degradacji izofetamidu, przy wysokim dopasowaniu danych (R² = 0,8629–0,9749). W kontroli czas połowicznego rozkładu izofetamidu wyniósł DT50 = 13,2 dnia. Najszybszy rozkład obserwowano w wariancie łączącym olejek tatarakowy z Pseudomonas (DT50 = 7,4 dnia). Wyniki badań wskazują, że czynniki biologiczne stosowane łącznie z izofetamidem wpływają na zachowanie izofetamidu w liściach sałaty.

 

The aim of the study was to determine the effect of biological factors – microorganisms (Pseudomonas spp. and Saccharomyces cere­visiae) and calamus essential oil (Acorus calamus L.), used combined or separately, on the behavior of isofetamid in lettuce (Lactucasativa L.). The lettuce was exposed to fungicide containing isofetamid (3.6 mg/plant), and after 2 hours, the following treatments were carried out: variant 1 – calamus oil (12%), variant 2 – calamus oil (12%) + Pseudomonas (106 CFU/ml), variant 3 – calamus oil (12%) + Saccharomyces cerevisiae (106 CFU/ml). The control group included lettuce plants treated only with isofetamid. After the application of isofetamid, its concentration was determined by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) the dynamics of the compound’s loss in lettuce leaves were determined. Analysis of exponential degradation models confirmed the influ­ence of biological factors on the rate of isofetamid degradation, with a high data fit (R² = 0.8629–0.9749). In the control group, the half-life of isofetamid was DT50 = 13.2 days. The fastest degradation was observed in the variant combining calamus oil with Pseudomonas(DT50 = 7.4 days). The results of the study indicate that biological agents used in combination with isofetamid affect the behavior of the isofetamid in lettuce leaves.

Słowa kluczowe
sałata; mikroorganizmy; fungicyd; olejek tatarakowy; degradacja izofetamidu; lettuce; microorganisms; fungicide; calamus essential oil; isofetamid degradation
Referencje

Chen S., Luo J., Hu M., Geng P., Zhang Y. 2012. Microbial detoxification of bifenthrin by a novel yeast and its potential for con­taminated soils treatment. PLoS ONE 7 (2): e30862. DOI: 10.1371/journal.pone.0030862

 

Cignola R., Carminati G., Natolino A., Di Francesco A. 2024. Effects of bioformulation prototype and bioactive extracts from Agaricus bisporus spent mushroom substrate on controlling Rhizoctonia solani of Lactuca sativa L. Frontiers in Plant Science 15: 1466956. DOI: 10.3389/fpls.2024.1466956

 

de Carvalho Brito R., da Silva Fontes L., da Silva P.H.S., de Sousa Santana C., Barbosa D.R.S. 2022. Essential oils from Betula lenta, Cinnamomum cassia, Citrus aurantium var. Amara and Acorus calamus as biopesticides against cowpea weevil. Inter­national Journal of Tropical Insect Science 42 (1): 261–268. DOI: 10.1007/S42690-021-00541-4

 

Djouaka R., Soglo M.F., Kusimo M.O., Adéoti R., Talom A., Zeukeng F., Paraïso A., Afari-Sefa V., Saethre M.G., Manyong V., Tamò M., Waage J., Lines J., Mahuku G. 2018. The rapid degradation of lambda-cyhalothrin makes treated vegetables rela­tively safe for consumption. International Journal of Environmental Research and Public Health 15 (7): 1536. DOI: 10.3390/ IJERPH15071536

 

Ebrahimi M., Safaralizade M.H., Valizadegan O. 2013. Contact toxicity of Azadirachta indica (Adr. Juss.), Eucalyptus camaldu­lensis (Dehn.) and Laurus nobilis (L.) essential oils on mortality cotton aphids, Aphis gossypii Glover (Hem.: Aphididae). Archives of Phytopathology and Plant Protection 46 (18): 2153–2162. DOI: 10.1080/03235408.2013.774526

 

Elumalai P., Gao X., Parthipan P., Luo J., Cui J. 2025. Agrochemical pollution: A serious threat to environmental health. Current Opinion in Environmental Science & Health 43: 100597. DOI: 10.1016/j.coesh.2025.100597

 

Fantke P., Juraske R. 2013. Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology 47 (8): 3548–3562. DOI: 10.1021/es303525x

 

Gilani R.A., Rafique M., Rehman A., Munis M.F.H., Rehman S., Chaudhary H.J. 2016. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. Journal of Basic Microbiology 56 (2): 105–119. DOI: 10.1002/JOBM.201500336

 

Guo X., Xie C., Wang L., Li Q., Wang Y. 2019. Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environ­mental Science and Pollution Research 26 (9): 8429–8443. DOI: 10.1007/S11356-019-04358-0

 

Gupta I., Singh R., Muthusamy S., Sharma M., Grewal K., Singh H.P., Batish D.R. 2023. Plant essential oils as biopesticides: ap­plications, mechanisms, innovations, and constraints. Plants 12 (16): 2916. DOI: 10.3390/PLANTS12162916

 

Horská T., Kocourek F., Stará J., Holý K., Mráz P., Krátký F., Kocourek V., Hajšlová J. 2020. Evaluation of pesticide residue dy­namics in lettuce, onion, leek, carrot and parsley. Foods 9 (5): 680. DOI: 10.3390/FOODS9050680

 

Iwaniuk P., Borusiewicz A., Łozowicka B. 2022. Fluazinam and its mixtures induce diversified changes of crucial biochemical and antioxidant profile in leafy vegetable. Scientia Horticulturae 298: 110988. DOI: 10.1016/j.scienta.2022.110988

 

Iwaniuk P., Łozowicka B. 2022. Biochemical compounds and stress markers in lettuce upon exposure to pathogenic and fungicides inhibiting oxidative phosphorylation. Planta 255: 61. DOI: 10.1007/s00425-022-03838-x

 

Jing J., Zhou Y., Zhang Z., Wu L., Zhang H. 2023. Effect of tank-mixed adjuvant on the behavior of chlorantraniliprole and dife­noconazole in soil. Heliyon 9 (1): e12658. DOI: 10.1016/j.heliyon.2022.e12658

 

Kabir M.H., El-Aty A.M.A., Im S.J., Rahman M.M., Kim S.-W., Farha W., Choi J.-H., Jung D.-I., Lee Y.-J., Lieu T., Shin H.-C., Im G.-J., Hong S.-M., Shim J.-H. 2016. Determination of residual levels of metrafenone in lettuce grown under greenhouse conditions using gas chromatography with a micro-electron capture detector. Applied Biological Chemistry 59: 43–49. DOI: 10.1007/s13765-015-0126-7

 

Kaczyński P., Iwaniuk P., Jankowska M., Orywal K., Socha K., Perkowski M., Farhan J.A., Łozowicka B. 2024. Pesticide residues in common and herbal teas combined with risk assessment and transfer to the infusion. Chemosphere 367: 143550. DOI: 10.1016/j.chemosphere.2024.143550

 

Kaczyński P., Łozowicka B., Wołejko E., Iwaniuk P., Konecki R., Drągowski W., Łozowicki J., Amanbek N., Rusiłowska J., Pie­traszko A. 2020. Complex study of glyphosate and metabolites influence on enzymatic activity and microorganisms associa­tion in soil enriched with Pseudomonas fluorescens and sewage sludge. Journal of Hazardous Materials 393: 122443. DOI: 10.1016/j.jhazmat.2020.122443

 

Książek-Trela P., Potocki L., Szpyrka E. 2025. The impact of novel bacterial strains and their consortium on diflufenican degrada­tion in the mineral medium and soil. Scientific Reports 15 (1): 1–13. DOI: 10.1038/S41598-025-02696-3

 

Kumari M., Swarupa P., Kesari K.K., Kumar A. 2022. Microbial inoculants as plant biostimulants: a review on risk status. Life 12 (1): 12. DOI: 10.3390/life13010012

 

Lu M.-X., Jiang W.W., Wang J.-L., Jian Q., Shen Y., Liu X.-J., Yu X.-Y. 2014. Persistence and dissipation of chlorpyrifos in brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLoS ONE 9 (6): e100556. DOI: 10.1371/ journal.pone.0100556

 

Łozowicka B., Wołejko E., Kaczyński P., Konecki R., Iwaniuk P., Drągowski W., Łozowicki J., Tujtebajeva G., Wydro U., Jabłońska-Trypuć A. 2021. Effect of microorganism on behaviour of two commonly used herbicides in wheat/soil system. Applied Soil Ecology 162: 103879. DOI: 10.1016/j.apsoil.2020.103879

 

Markam S.S., Raj A., Kumar A., Khan M.L. 2024. Microbial biosurfactants: Green alternatives and sustainable solution for aug­menting pesticide remediation and management of organic waste. Current Research in Microbial Sciences 7: 100266. DOI: 10.1016/J.CRMICR.2024.100266

 

Mesnage R., Antoniou M.N. 2018. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Frontiers in Public Health 5: 361. DOI: 10.3389/fpubh.2017.00361

 

Miao J.K., Shi R.H., Li C., Li X.W., Chen Q.X. 2016. Sweet flag (Acorus calamus) oils. Essential oils in food preservation. s. 775–782. W: Flavor and Safety (V. Preedy, red.). Academic Press, London, UK, 1120 ss. DOI: 10.1016/B978-0-12-416641-7.00088-2

 

Narayanan M., Kumarasamy S., Ranganathan M., Kandasamy S., Kandasamy G., Gnanavel K. 2020. Enzyme and metabolites attained in degradation of chemical pesticides ß Cypermethrin by Bacillus cereus. Materials Today: Proceedings 33 (Part 7): 3640–3645. DOI: 10.1016/J.MATPR.2020.05.722

 

Nishimi S., Abe Y., Kuwahara N., Nishimura A., Tsukuda S., Araki S., Tsunematsu K., Fukumori Y., Ogawa M., Suzuki K., Mitani S. 2024. Advantageous properties of a new fungicide, isofetamid. Journal of Pesticide Science 49 (2): 130–134. DOI: 10.1584/JPESTICS.D23-067

 

Parven A., Md Meftaul I., Venkateswarlu K., Megharaj M. 2025. Herbicides in modern sustainable agriculture: environmental fate, ecological implications, and human health concerns. International Journal of Environmental Science and Technology 22: 1181–1202. DOI: 10.1007/s13762-024-05818-y

 

Qi X., Zhong S., Schwarz P., Chen B., Rao J. 2023. Mechanisms of antifungal and mycotoxin inhibitory properties of Thymus vul­garis L. essential oil and their major chemical constituents in emulsion-based delivery system. Industrial Crops and Products 197: 116575. DOI: 10.1016/J.INDCROP.2023.116575

 

SANTE 11312/2021 v2 – Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Version 2 implemented by 1 January 2024.

 

Sarker A., Kim D., Jeong W.-T. 2024. Environmental fate and sustainable management of pesticides in soils: a critical review fo­cusing on sustainable agriculture. Sustainability 16 (23): 10741. DOI: 10.3390/su162310741

 

Schusterova D., Han J., Gomersall V., Jursik M., Horska T., Kosek V., Kocourek F., Kocourek V., Hajslova J. 2025. Optimized methods for the investigation of changes in levels of pesticide residues and their transformation products in iceberg lettuce. Food Research International 202: 115625. DOI: 10.1016/j.foodres.2024.115625

 

Swarcewicz M.K., Gregorczyk A. 2013. Atrazine degradation in soil: effects of adjuvants and a comparison of three mathematical models. Pest Management Science 69 (12): 1346–1350. DOI: 10.1002/ps.3510

 

Wijerathna S.S., Perera A.G.W.U., Chinthaka S.D.M. 2023. Chemical composition and biological efficacy of Acorus calamus (L.) rhizome essential oil on Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Oryzaephilus surinamensis (L.) as stored-grain protectants. Biocatalysis and Agricultural Biotechnology 54: 102931. DOI: 10.1016/J.BCAB.2023.102931

 

Wróblewski M., Piotrowska-Niczyporuk A., Ciereszko I., Gocek N., Żabka A., Szczeblewski P., Sobiech Ł., Saja-Garbarz D., Polit J.T. 2025. Phytotoxicity and bioherbicidal potential of sweet flag (Acorus calamus L.) essential oil on Fabaceae and Brassicaceae species. Scientia Horticulturae 347: 114180. DOI: 10.1016/J.SCIENTA.2025.114180

 

Wydro U., Jabłońska-Trypuć A., Medo J., Borowski G., Kaczyński P., Łozowicka B., Wołejko E. 2024. Effect of Pseudomonas flu­orescens on isofetamid dissipation and soil microbial activity. Applied Sciences 14 (23): 10901. DOI: 10.3390/app142310901

 

Yang X., Gil M.I., Yang Q., Tomás-Barberán F.A. 2022. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety 21 (1): 4–45. DOI: 10.1111/1541-4337.12877

 

Yin Y., Miao J., Shao W., Liu X., Zhao Y., Ma Z. 2023. Fungicide resistance: progress in understanding mechanism, monitoring, and management. Phytopathology 113 (4): 707–718. DOI: 10.1094/PHYTO-10-22-0370-KD

 

Zhou L., Liu Y., Kong F., Jia S., Wang Q., Wang Z., Zhang H., Huang X. 2024. Sensitivity of Botrytis cinerea from vineyards to boscalid, isofetamid, and pydiflumetofen in Shandong Province, China. Phytopathology 114 (5): 1068–1074. DOI: 10.1094/ PHYTO-10-23-0369-KC

Progress in Plant Protection (2025) : 0-0
Data pierwszej publikacji on-line: 2025-11-20 13:50:52
http://dx.doi.org/10.14199/ppp-2025-027
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy