Progress in Plant Protection

Mechanizmy odporności patogenów grzybowych na substancje czynne fungicydów
Mechanisms of resistance of fungal pathogens to active substances of fungicides

Agnieszka Kiniec, e-mail: a.kiniec@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Toruniu, Pigwowa 16, 87-100 Toruń, Polska
Streszczenie

Istotnym problemem współczesnego rolnictwa jest obniżenie efektywności dostępnych na rynku środków ochrony roślin. Przyczyną spadku lub nawet całkowitej utraty skuteczności fungicydów jest często wzrost odporności na ich substancje czynne u zwalczanych pa­togenów. Odporność na substancje czynne środków grzybobójczych jest cechą naturalnie występującą w populacjach grzybów. Jednak działania człowieka powodują nasilenie rozwoju tego zjawiska. W artykule przedstawiono sposoby działania substancji czynnych fungicy­dów najpowszechniej stosowanych w Polsce do ochrony upraw: triazoli, morfolin, inhibitorów dehydrogenazy kwasu bursztynowego oraz strobiluryn. Opisano także mechanizmy nabywania odporności przez grzyby na te substancje.

 

A significant problem of modern agriculture is the reduction in the effectiveness of plant protection products available on the market. The reason for the decrease or even complete loss of effectiveness of fungicides is often the increase in resistance to their active sub­stances among the pathogens being fought. Resistance to the active substances of preparations is a feature that naturally occurs in fungal populations. However, human activities cause the development of this phenomenon to intensify. The article presents the modeses of action of the active substances of the fungicides most commonly used in Poland to protect crops: triazoles, morpholines, succinic acid de­hydrogenase inhibitors and strobilurins. The mechanisms of acquiring resistance by fungi to these substances have also been described.

Słowa kluczowe

triazole; morfoliny; strobiluryny; SDHI; odporność grzybów; DMI; morpholines; QoI; SDHI; fungus resistance

Referencje

Andrade A.C., del Sorbo G., van Nistelrooy J.G.M., de Waard M.A. 2000. The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146 (8): 1987–1997. DOI: 10.1099/00221287-146-8-1987

 

Arnold C.J. 2018. Molecular evolution of fungicide resistance in Blumeria graminis (PhD. thesis). University of East Anglia, Norwich, UK, 149 ss.

 

Avenot H.F., Michailides T.J. 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection 29 (7): 643–651. DOI: 10.1016/j. cropro.2010.02.019

 

Avila-Adame C., Köller W. 2002. Disruption of the alternative oxidase gene in Magnaporthe grisea and its impact on host infec­tion. Molecular Plant-Microbe Interactions 15 (5): 493–500. DOI: 10.1094/MPMI.2002.15.5.493

 

Bartlett D.W., Clough J.M., Godwin J.R., Hall A.A., Hamer M., Parr-Dobrzanski B. 2002. The strobilurin fungicides. Pest Manage­ment Science 58 (7): 649–662. DOI: 10.1002/ps.520

 

Bolton M.D., Birla K., Rivera-Varas V., Rudolph K., Secor G.A. 2012. Characterization of CbCyp51 from field isolates of Cerco­spora beticola. Phytopathology 102 (3): 298–305. DOI: 10.1094/PHYTO-07-11-0212

 

Bolton M.D., Riviera V., Secor G.A. 2013. Identification of the G143A mutation associated with QoI resistance in Cercospora beticola field isolates from Michigan. Pest Management Science 69 (1): 35–39. DOI: 10.1002/ps.3358

 

Brent K. 2012. Historical perspectives of fungicide resistance. s. 3–18. W: Fungicide Resistance in Crop Protection: Risk and Management (T.S. Thind, red.). CABI Publishing, Wallingford, UK. DOI: 10.1079/9781845939052.0003

 

Brown J.K.M., Le Boulaire S., Evans N. 1996. Genetics of responses to morpholine-type fungicides and of avirulences in Erysiphe graminis f. sp. hordei. European Journal of Plant Pathology 102: 479–490.

 

Cañas-Gutiérrez G.P., Angarita-Velásquez M.J., Restrepo-Flórez J.M., Rodríguez P., Moreno C.X., Arango R. 2009. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Management Science 65 (8): 892–899. DOI: 10.1002/ps.1770

 

Carter H.E., Fraaije B.A., West J.S., Kelly S.L., Mehl A., Shaw M.W., Cools H.J. 2014. Alterations in the predicted regulatory and coding regions of the sterol 14α-demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape pathogen Pyrenopeziza brassicae. Molecular Plant Pathology 15 (5): 513–522. DOI: 10.1111/mpp.12106

 

Cools H.J., Mullins J.G.L., Fraaije B.A., Parker J.E., Kelly D.E., Lucas J.A., Kelly S.L. 2011. Impact of recently emerged sterol 14α-demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity. Applied and Environmental Microbiology 77 (11): 3830–3837. DOI: 10.1128/AEM.00027-11

 

Deising H.B., Reimann S., Pascholati S.F. 2008. Mechanisms and significance of fungicide resistance. Brazilian Journal of Micro­biology 39 (2): 286–295. DOI: 10.1590/S1517-838220080002000017

 

Delye C., Bousset L., Corio-Costet M.-F. 1998. PCR cloning and detection of point mutations in the eburicol 14a-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a “recalcitrant” fungus. Current Genetics 34 (5): 399–403. DOI: 10.1007/ s002940050413

 

Delye C., Laigret F., Corio-Costet M.-F. 1997. A mutation in the 14α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Applied and Environmental Microbiology 63 (8): 2966–2970. DOI: 10.1128/ AEM.63.8.2966-2970.1997

 

de Miccolis Angelini R.M., Pollastro S., Faretra F. 2015. Genetics of fungicide resistance. s. 13–34. W: Fungicide Resistance in Plant Pathogens. Principles and a Guide to Practical Management (H. Ishii, D.W. Hollomon, red.). Springer Japan, Tokyo, Japan. DOI: 10.1007/978-4-431-55642-8_2

 

de Miccolis Angelini R.M., Rotolo C., Masiello M., Gerin D., Pollastro S., Faretra F. 2014. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Management Science 70 (12): 1785–1796. DOI: 10.1002/ps.3711

 

Engels A.J.G., De Waard M.A. 1998. Biochemical analysis of resistance to fenpropimorph in Aspergillus niger. s. 95–112. W: Management of resistance to the fungicide fenpropimorph in Erysiphe graminis f. sp. tritici (A.J.G. Engels, red.) (PhD. thesis). Wageningen Agricultural University, Wageningen, Netherlands, 129 ss.

 

Fernandez-Ortuno D., Tores J.A., de Vicente A., Perez-Garcia A. 2008. Mechanism of resistance to QoI fungicides in phytopatho­genic fungi. International Microbiology 11 (1): 1–9. DOI: 10.2436/20.1501.01.38

 

Fiaccadori R., Cicognani E., Alberoni G., Collina M., Brunelli A. 2011. Sensitivity to strobilurin fungicides of Italian Venturia in­aequalis populations with different origin and scab control. Pest Management Science 67 (5): 535–540. DOI: 10.1002/ps.2090

 

FRAC Code List 2021. Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groups on product labels). Fungicide Resistance Action Committee, 17 ss. https://docplayer.net/208399713-Disclaimer-frac-code-list-2021-page-1-of-17.html#google_vignette [dostęp: 02.10.2023].

 

Gleason J., Peng J., Proffer T.J., Slack S.M., Outwater C.A., Rothwell N.L., Sundin G.W. 2021. Resistance to boscalid, fluopyram and fluxapyroxad in Blumeriella jaapii from Michigan (U.S.A.): molecular characterization and assessment of practical resis­tance in commercial cherry orchards. Microorganisms 9 (11): 2198. DOI: 10.3390/microorganisms9112198

 

Grasso V., Sierotzki H., Garibaldi A., Gisi U. 2006. Characterization of the cytochrome b gene fragment of Puccinia species responsible for the binding site of QoI fungicides. Pesticide Biochemistry and Physiology 84 (2): 72–82. DOI: 10.1016/j. pestbp.2005.05.005

 

Hamamoto H., Hasegawa K., Nakaune R., Lee Y.J., Makizumi Y., Akutsu K., Hibi T. 2000. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum. Applied and Environmental Micro­biology 66 (8): 3421–3426. DOI: 10.1128/aem.66.8.3421-3426.2000

 

Hayes L.E., Sackett K.E., Anderson N.P., Flowers M.D., Mundt C.C. 2016. Evidence of selection for fungicide resistance in Zymo­septoria tritici populations on wheat in Western Oregon. Plant Disease 100 (2): 483–489. DOI: 10.1094/PDIS02-15-0214-RE

 

Herms S., Seehaus K., Koehle H., Conrath U. 2002. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv. tabaci. Plant Physiology 130 (1): 120–127. DOI: 10.1104/pp.004432

 

Joffrion T.M., Cushion M.T. 2010. Sterol biosynthesis and sterol uptake in the fungal pathogen Pneumocystis carinii. FEMS Mi­crobiology Letters 311 (1): 1–9. DOI: 10.1111/j.1574-6968.2010.02007.x

 

Kim Y.S., Dixon E.W., Vincelli P., Farman M.L. 2003. Field resistance to strobilurin (QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene. Phytopathology 93 (7): 891–900. DOI: 10.1094/PHYTO.2003.93.7.891

 

Kiniec A., Piszczek J. 2021. Ocena stopnia wrażliwości izolatów Cercospora beticola na fungicydy. [Evaluation of the sensitivity level of Cercospora beticola isolates to fungicides]. Konferencja Ochrony Roślin 61. Sesja Naukowa IOR – PIB, Streszczenia: 121–122.

 

Köhle H., Grossmann K., Jabs T., Gerhard M., Kaiser W., Glaab J., Conrath U., Seehaus K., Herms S. 2002. Physiological effects of the strobilurin fungicide F 500 on plants. s. 61–74. W: Modern Fungicides and Antifungal Compounds III (H.-W. Dehne, U. Gisi, K.H. Kuck, P.E. Russell, H. Lyr, red.). AgroConcept GmbH, Bonn, Germany, 317 ss. ISBN 3-7862-0144-7.

 

Lamping E., Baret P.V., Holmes A.R., Monk B.C., Goffeau A., Cannon R.D. 2010. Fungal PDR transporters: phylogeny, topology, motifs and function. Fungal Genetics and Biology 47 (2): 127. DOI: 10.1016/j.fgb.2009.10.007

 

Lasseron-De Falandre A., Daboussi M.-J., Leroux P. 1991. Inheritance of resistance to fenpropimorph and terbinafine, two sterol biosynthesis inhibitors, in Nectria haematococca. Phytopathology 81 (11): 1432–1438. DOI: 10.1094/Phyto-81-1432

 

Lasseron-De Falandre A., Debieu D., Bach J., Malosse C., Leroux P. 1999. Mechanisms of resistance to fenpropimorph and ter­binafine, two sterol biosynthesis inhibitors, in Nectria haematococca, a phytopathogenic fungus. Pesticide Biochemistry and Physiology 64 (3): 167–184. DOI: 10.1006/pest.1999.2424

 

Lepesheva G.I., Waterman M.R. 2007. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochimica et Biophysica Acta 1770 (3): 467–477. DOI: 10.1016/j.bbagen.2006.07.018

 

Liu X., Yu F., Schnabel G., Wu J., Wang Z., Ma Z. 2011. Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genetics and Biology 48 (2): 113–123. DOI: 10.1016/j.fgb.2010.10.004

 

Luo C.-X., Schnabel G. 2008. The cytochrome P450 lanosterol 14α-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Applied and Environmental Microbiology 74 (2): 359–366. DOI: 10.1128/AEM.02159-07

 

Lv H., Li J., Wu Y., Garyali S., Wang Y. 2016. Transporter and its engineering for secondary metabolites. Applied Microbiology and Biotechnology 100 (14): 6119–6130. DOI: 10.100/s00253-016-7605-6

 

Ma Z., Felts D., Michailides T.J. 2003. Resistance to azoxystrobin in Alternaria isolates from pistachio in California. Pesticide Biochemistry and Physiology 77 (2): 66–74. DOI: 10.1016/j.pestbp.2003.08.002

 

Ma Z., Michailides T.J. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection 24 (10): 853–863. DOI: 10.1016/j.cropro.2005.01.011

 

Malandrakis A.A., Vattis K.N., Markoglou A.N., Karaoglanidis G.S. 2017. Characterization of boscalid-resistance conferring mu­tations in the SdhB subunit of respiratory complex II and impact on fitness and mycotoxin production in Penicillium expansum laboratory strains. Pesticide Biochemistry and Physiology 138: 97–103. DOI: 10.1016/j.pestbp.2017.03.009

 

Markoglou A.N., Ziogas B.N. 1999. Genetic control of resistance to fenpropimorph in Ustilago maydis. Plant Pathology 48: 521–530.

 

Markoglou A.N., Ziogas B.N. 2001. Genetic control of resistance to the piperidine fungicide fenpropidin in Ustilago maydis. Jour­nal of Phytopathology 149 (9): 551–559. DOI: 10.1046/j.1439-0434.2001.00676.x

 

Mellado E., Alcazar-Fuoli L., García-Effrón G., Alastruey-Izquierdo A., Cuenca-Estrella M., Rodríguez-Tudela J.L. 2006. New resistance mechanisms to azole drugs in Aspergillus fumigatus and emergence of antifungal drugs-resistant A. fumigatus atypi­cal strains. Medical Mycology 44 (Supplement 1): 367–371. DOI: 10.1080/13693780600902243

 

Mellado E., Diaz-Guerra T.M., Cuenca-Estrella M., Rodriguez-Tudela J.L. 2001. Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. Journal of Clinical Microbiology 39 (7): 2431–2438. DOI: 10.1128/JCM.39.7.2431-2438.2001

 

Mellado E., Garcia-Effron G., Buitrago M.J., Alcazar-Fuoli L., Cuenca-Estrella M., Rodriguez-Tudela J.L. 2005. Targeted gene disruption of the 14α-sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicro­bial Agents and Chemotherapy 49 (6): 2536–2538. DOI: 10.1128/AAC.49.6.2536-2538.2005

 

Mostafanezhad H., Edin E., Grenville‑Briggs L.J., Lankinen A., Liljeroth E. 2022. Rapid emergence of boscalid resistance in Swedish populations of Alternaria solani revealed by a combination of field and laboratory experiments. European Journal of Plant Pathology 162: 289–303. DOI: 10.1007/s10658-021-02403-8

 

Müllender M.M., Mahlein A.K., Stammler G., Varrelmann M. 2020. Evidence for the association of target-site resistance in cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates. Pest Management Science 77 (4): 1765–1774. DOI: 10.1002/ps.6197

 

Nikou D., Malandrakis M., Konstantakaki M., Vontas J., Markoglou A., Ziogas B. 2009. Molecular characterization and detection of overexpressed C-14 alpha-demethylase-based DMI resistance in Cercospora beticola field isolates. Pesticide Biochemistry and Physiology 95 (1): 18–27. DOI: 10.1016/j.pestbp.2009.04.014

 

Obuya J.O., Ananga A., Franc G.D. 2015. Silent mutation: characterization of its potential as a mechanism for sterol 14α-demethylase resistance in Cercospora beticola field isolates from the United States. Journal of Plant Pathology and Microbiology 6 (6): 280. DOI: 10.4172/2157-7471.1000280

 

Pao S.S., Paulsen I.T., Saier M.H. 1998. Major facilitator superfamily. Microbiology and Molecular Biology Reviews 62 (1): 1–34. DOI: 10.1128/MMBR.62.1.1-34.1998

 

Pearce T.L., Wilson C.R., Gent D.H., Scott J.B. 2019. Multiple mutations across the succinate dehydrogenase gene complex are associated with boscalid resistance in Didymella tanaceti in pyrethrum. PLoS ONE 14 (6): e0218569. DOI: 10.1371/journal. pone.0218569

 

Pieczul K., Perek A. 2015. Przyczyny odporności izolatów Cercospora beticola (chwościk buraka) na strobiluryny w Wielko­polsce. [The reasons of strobilurin resistance of Cercospora beticola (Cercospora leaf spot) isolates in Wielkopolska region]. Progress in Plant Protection 55 (1): 45–48. DOI: 10.14199/ppp-2015-008

 

Piszczek J., Pieczul K., Kiniec A. 2018a. First report of G143A strobilurin resistance in Cercospora beticola in sugar beet (Beta vulgaris) in Poland. Journal of Plant Diseases and Protection 125 (1): 99–101. DOI: 10.1007/s41348-017-0119-3

 

Piszczek J., Strażyński P., Mrówczyński M. (red.). 2018b. Metodyka integrowanej ochrony buraka cukrowego i pastewnego dla doradców. Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Poznań, 123 ss. ISBN 978-83-64655-44-9.

 

Qiu J. 2006. Detection and mechanisms of resistance to sterol demethylation inhibiting fungicides in Cercospora arachidicola (Master of Science). University of Georgia, Athens, USA, 82 ss.

 

Reimann S., Deising H.B. 2005. Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4’-hydroxyflavone and enhancement of fungicide activity. Applied and Environmental Microbiology 71 (6): 3269–3275. DOI: 10.1128/AEM.71.6.3269–3275.2005

 

Robertson S., Gilmour J., Newman D., Lennard J.H. 1996. Sensitivity of barley powdery mildew to morpholine fungicides. Part I: Work in Scotland. Project Report 127: 1–60.

 

Roohparvar R., de Waard M.A., Kema G.H.J., Zwiers L.-H. 2007. MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genetics and Biology 44 (5): 378–388. DOI: 10.1016/j.fgb.2006.09.007

 

Schmitz H.K., Medeiros C.A., Craig I.R., Stammler G. 2014. Sensitivity of Phakopsora pachyrhizi towards quinone-out­side-inhibitors and demethylation-inhibitors, and corresponding resistance mechanisms. Pest Management Science 70 (3): 378–388. DOI: 10.1002/ps.3562

 

Schnabel G., Jones A.L. 2001. The 14α-demethylase (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology 91 (1): 102–110. DOI: 10.1094/PHYTO.2001.91.1.102

 

Semar M., Strobel D., Koch A., Klappach K., Stammler G. 2007. Field efficacy of pyraclostrobin against populations of Py­renophora teres containing the F129L mutation in the cytochrome b gene. Journal of Plant Diseases and Protection 114 (3): 117–119. DOI: 10.1007/BF03356718

 

Sierotzki H., Frey R., Wullschleger J., Palermo S., Karlin S., Godwin J., Gisi U. 2007. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici‐repentis and implications for QoI resistance. Pest Management Science 63 (3): 225–233. DOI: 10.1002/ps.1330

 

Sierotzki H., Scalliet G. 2013. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103 (9): 880–887. DOI: 10.1094/PHYTO-01-13-0009-RVW

 

Stammler G., Cordero J., Koch A., Semar M., Schlehuber S. 2009. Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Protection 28 (10): 891–897. DOI: 10.1016/j. cropro.2009.05.007

 

Stergiopoulos I., Zwiers L.-H., de Waard M.A. 2002. Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily. European Journal of Plant Pathology 108 (7): 719–734. DOI: 10.1023/A:1020604716500

 

Sun X., Wang J., Feng D., Ma Z., Li H. 2011. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum in­volved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Applied Microbiology and Biotechnology 91 (4): 1107–1119. DOI: 10.1007/s00253-011-3355-7

 

Theodoulou F.L. 2000. Plant ABC transporters. Biochimica et Biophysica Acta 1465 (1–2): 79–103. DOI: 10.1016/s0005- 2736(00)00132-2

 

Trkulja N.R., Milosavljević A.G., Milana S., Mitrović M.S., Jović J.B., Toševski I.T., Khan M.F.R., Secor G.A. 2017. Molecular and experimental evidence of multi-resistance of Cercospora beticola field populations to MBC, DMI and QoI fungicides. European Journal of Plant Pathology 149 (4): 895–910. DOI: 10.1007/s10658-017-1239-0

 

Vaghefi N., Hay F.S., Kikkert J.R., Pethybridge S.J. 2016. Genotypic diversity and resistance to azoxystrobin of Cercospora beti­cola on processing table beet in New York. Plant Disease 100 (7): 1466–1473. DOI: 10.1094/PDIS-09-15-1014-RE

 

Veloukas T., Markoglou A.N., Karaoglanidis G.S. 2013. Differential effect of SdhB gene mutations on the sensitivity to SDHI fungicides in Botrytis cinerea. Plant Disease 97 (1): 118–122. DOI: 10.1094/PDIS-03-12-0322-RE

 

Wood P.M., Hollomon D.W. 2003. A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of Complex III. Pest Management Science 59 (5): 499–511. DOI: 10.1002/ps.655

 

Wyand R.A., Brown J.K.M. 2005. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal Genetics and Biology 42 (8): 726–735. DOI: 10.1016/j.fgb.2005.04.007

 

Yan X., Ma W.B., Li Y., Wang H., Que Y.W., Ma Z.H., Talbot N.J., Wang Z.Y. 2011. A sterol 14α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genetics Biology 48 (2): 144–153. DOI: 10.1016/j.fgb.2010.09.005

 

Yin Y.N., Kim Y.K., Xiao C.L. 2011. Molecular characterization of boscalid resistance in field isolates of Botrytis cinerea from apple. Phytopathology 101 (8): 986–995. DOI: 10.1094/PHYTO-01-11-0016

 

Ziogas B.N., Malandrakis A.A. 2015. Sterol biosynthesis inhibitors: C14 demethylation (DMIs). s. 199–216. W: Fungicide Re­sistance in Plant Pathogens. Principles and a Guide to Practical Management (H. Ishii, D.W. Hollomon, red.). Springer Japan, Tokyo, Japan. DOI: 10.1007/978-4-431-55642-8_13

Progress in Plant Protection (2023) 63: 266-274
Data pierwszej publikacji on-line: 2023-12-04 14:23:03
http://dx.doi.org/10.14199/ppp-2023-028
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy