Progress in Plant Protection

Ocena użyteczności metody Bikermana do wyznaczania kątów zwilżania liści
Evaluation of the utility of the Bikerman method for determining leaf wetting angles

Mateusz Smorawski, e-mail: mateusz.smorawski@up.poznan.pl

Uniwersytet Przyrodniczy w Poznaniu, Wojska Polskiego 28, 60-637 Poznań, Polska

Henryk Ratajkiewicz, e-mail: henryk.ratajkiewicz@up.poznan.pl

Uniwersytet Przyrodniczy w Poznaniu, Wojska Polskiego 28, 60-637 Poznań, Polska
Streszczenie

Właściwości fizykochemiczne cieczy do opryskiwania wpływają na efektywność i skuteczność zabiegów ochrony roślin. Miarą zwilżalności liści jest kąt zwilżania, którego badanie jest pomijane w rutynowo wykonywanych zabiegach ochrony roślin. Poszukując metody użytecz­nej do wyznaczania kąta zwilżania liści do potrzeb zabiegów ochrony roślin oceniono tę, którą Bikerman (1941) zastosował do powierzch­ni obiektu obserwowanego z góry. W pracy zostały przedstawione założenia metody i wynikające z nich możliwości i ograniczenia w jej zastosowaniu. Przedyskutowano wpływ właściwości liści, cieczy i kropli na kąt zwilżania. Stwierdzono, że metoda Bikermana jest odpo­wiednia do wyznaczania kątów zwilżania liści w szerokim zakresie właściwości fizycznych cieczy używanych w zabiegach ochrony roślin.

 

The physico-chemical properties of the spray liquid affect the efficiency and effectiveness of crop protection treatments. A measure of leaf wettability is the wetting angle, the testing of which is neglected in routinely performed spraying. In the search for a method useful for determining leaf wetting angle for crop protection treatments, the method that Bikerman (1941) applied to the surface of the object observed from above was evaluated. The assumptions of the method and the resulting opportunities and constraints in its application are presented in this paper. The influence of leaf, liquid and droplet properties on the wetting angle was discussed. It was concluded that Bikerman’s method is suitable for determining leaf wetting angles over a wide range of physical properties of liquids used in crop protection treatments.

Słowa kluczowe
zwilżalność; adiuwant; rozlanie kropli; wielkość kropli; powierzchnia liścia; wettability; adjuvant; droplet spreading; droplet size; leaf surface
Referencje

Alwin S., Kubacki S. 1963. Badania nad wpływem przyczepności cieczy grzybobójczych na ich praktyczną skuteczność w walce z chorobami roślin. [Studies on the effect of adhesion of fungicides upon their effectiveness in control of diseases]. Biuletyn Instytutu Ochrony Roślin 24: 29–54.

 

Barthlott W., Mail M., Bhushan B., Koch K. 2017. Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Let­ters 9: 23. DOI: 10.1007/s40820-016-0125-1

 

Barthlott W., Neinhuis C., Cutler D., Ditsch F., Meusel I., Theisen I., Wilhelmi H. 1998. Classification and terminology of plant epicuticu­lar waxes. Botanical Journal of the Linnean Society 126 (3): 237–260. DOI: 10.1111/j.1095-8339.1998.tb02529.x

 

Bieliński D., Lipiński P., Wolska B., Jagielski J. 2006. Porównanie metod oznaczania statycznego kąta zwilżania powierzchni cieczą małocząsteczkową. [Comparison between values of sessile drop contact angle depending on method of determination]. Problemy Eksploatacji 1: 131–144.

 

Bikerman J.J. 1941. A method of measuring contact angles. Journal of Industrial and Engineering Chemistry 13 (6): 443–444. DOI: 10.1021/i560094a026

 

Castro M.J.L., Ojeda C., Cirelli A.F. 2014. Advances in surfactants for agrochemicals. Environmental Chemistry Letters 12: 85–95. DOI: 10.1007/s10311-013-0432-4

 

Chachalis D., Reddy K.N., Elmore C.D., Steele M.L. 2001. Herbicide efficacy, leaf structure, and spray droplet contact angle among Ipomoea species and smallflower morningglory. Weed Science 49 (5): 628–634. DOI: 10.1614/0043-1745(2001)049[0628:HELSAS ]2.0.CO;2

 

Chen L., Bonaccurso E. 2014. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Physical Review E 90 (2): 022401. DOI: 10.1103/PhysRevE.90.022401

 

Dario G., Del Bem Junior L., Ferrari J.L., da Silva F.N., Raetano C.G. 2023. Surface tension, spray deposition and volunteer RR© corn control by clethodim and quizalofop associated with adjuvants. Revista Ceres 70 (3): 12–20. DOI: 10.1590/0034-737X202370030002

 

Drelich J. 1997. The effect of drop (bubble) size on contact angle at solid surfaces. The Journal of Adhesion 63 (1–3): 31–51. DOI: 10.1080/00218469708015212

 

Drelich J. 2013. Guidelines to measurements of reproducible contact angles using a sessile-drop technique. Surface Innovations 1 (4): 248–254. DOI: 10.1680/si.13.00010

 

Drelich J.W., Boinovich L., Chibowski E., Della Volpe C., Hołysz L., Marmur A., Siboni S. 2020. Contact angles: history of over 200 years of open questions. Surface Innovations 8 (1–2): 3–27. DOI: 10.1680/jsuin.19.00007

 

Ebeling W. 1939. The rôle of surface tension and contact angle in the performance of spray liquids. Hilgardia 12 (11): 665–698.

 

Fedorchenko A.I. 2000. Effect of capillary perturbations on the dynamics of a droplet spreading over a surface. Journal of Engineering Thermophysics 10 (1): 1–11.

 

Fernández V., Guzmán-Delgado P., Graça J., Santos S., Gil L. 2016. Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Frontiers in Plant Science 7: 427. DOI: 10.3389/fpls.2016.00427

 

Firlik S., Molenda J., Borycki J. 2010. Porównanie metod wyznaczania swobodnej energii powierzchniowej polimerowych powłok orien­tujących ciekłe kryształy. Chemik 64 (4): 238–245.

 

Fisher L.R. 1979. Measurement of small contact angles for sessile drops. Journal of Colloid and Interface Science 72 (2): 200–205. DOI: 10.1016/0021-9797(79)90101-2

 

Fogg G.E. 1947. Quantitative studies on the wetting of leaves by water. Proceedings of the Royal Society B, Biological Sciences 134 (877): 503–522. DOI: 10.1098/rspb.1947.0028

 

Gao X., Li R. 2014. Spread and recoiling of liquid droplets impacting solid surfaces. AIChE Journal 60 (7): 2683–2691. DOI: 10.1002/ aic.14440

 

Gimenes M.J., Zhu H., Raetano C.G., Oliveira R.B. 2013. Dispersion and evaporation of droplets amended with adjuvants on soybeans. Crop Protection 44: 84–90. DOI: 10.1016/j.cropro.2012.10.022

 

Goddard E.D., Padmanabhan K.P.A. 1992. A mechanistic study of the wetting, spreading, and solution properties of organosilicone surfac­tants. s. 373–383. W: Adjuvants for Agrichemicals (C.L. Foy, red.). Wyd. I. CRC Press Taylor & Francis Group, Boca Raton, 735 ss.

 

Josserand C., Thoroddsen S.T. 2016. Drop impact on a solid surface. Annual Review of Fluid Mechanics 48 (1): 365–391. DOI: 10.1146/ annurev-fluid-122414-034401

 

Kirkwood J.G., Buff F.P. 1949. The statistical mechanical theory of surface tension. The Journal of Chemical Physics 17 (3): 338–343. DOI: 10.1063/1.1747248

 

Klamerus-Iwan A., Łagan S., Zarek M., Słowik-Opoka E., Wojtan B. 2020. Variability of leaf wetting and water storage capacity of branches of 12 deciduous tree species. Forests 11 (11): 1158. DOI: 10.3390/f11111158

 

Koch K., Bhushan B., Barthlott W. 2008. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4 (10): 1943–1963. DOI: 10.1039/B804854A

 

Koch K., Bhushan B., Barthlott W. 2009. Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science 54 (2): 137–178. DOI: 10.1016/j.pmatsci.2008.07.003

 

Kranias S. 2004. Effect of drop volume on static contact angles. Technical Note 310e by Spyridon Kranias, KRÜSS GmbH, France, 2 ss.

 

Laplace P.S. 1805. Sur l’action capillaire. s. 349–417. W: Traité de mécanique céleste. T. IV. J. B. M. Duprat, Paryż.

 

Li R., Ashgriz N., Chandra S. 2010. Maximum spread of droplet on solid surface: low reynolds and weber numbers. Journal of Fluids Engineering 132 (6): 061302. DOI: 10.1115/1.4001695

 

Liu T., Kim C.-J. 2017. Contact angle measurement of small capillary length liquid in super-repelled state. Scientific Reports 7: 740. DOI: 10.1038/s41598-017-00607-9

 

Lubarda V.A., Talke K.A. 2011. Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27 (17): 10705–10713. DOI: 10.1021/la202077w

 

Mack G.L. 1936. The determination of contact angles from measurements of the dimensions of small bubbles and drops. I. The spheroidal segment method for acute angles. The Journal of Physical Chemistry 40 (2): 159–167. DOI: 10.1021/j150371a001

 

Manthey F.A., Szelezniak E.F., Nalewaja J.D. 1992. Phytotoxicity of bentazon with oils, surfactants, and fertilizer salts. s. 473–483. W: Adjuvants for Agrichemicals (C.L. Foy, red.). Wyd. I. CRC Press Taylor & Francis Group, Boca Raton, 735 ss.

 

Nairn J.J., Forster W.A. 2017. Methods for evaluating leaf surface free energy and polarity having accounted for surface roughness. Pest Management Science 73 (9): 1854–1865. DOI: 10.1002/ps.4551

 

Nairn J.J., Forster W.A., van Leeuwen R.M. 2013. ‘Universal’ spray droplet adhesion model – accounting for hairy leaves. Weed Research 53 (6): 407–417. DOI: 10.1111/wre.12039

 

Neinhuis C., Barthlott W. 1998. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromor­phology and wettability. The New Phytologist 138 (1): 91–98. DOI: 10.1046/j.1469-8137.1998.00882.x

 

Neumann A.W. 1974. Contact angles and their temperature dependence: thermodynamic status, measurement, interpretation and applica­tion. Advances in Colloid and Interface Science 4 (2–3): 105–191. DOI: 10.1016/0001-8686(74)85001-3

 

Papierowska E., Szporak-Wasilewska S., Szewińska J., Szatyłowicz J., Debaene G., Utratna M. 2018. Contact angle measurements and water drop behavior on leaf surface for several deciduous shrub and tree species from a temperate zone. Trees 32 (5): 1253–1266. DOI: 10.1007/s00468-018-1707-y

 

Pasandideh‐Fard M., Qiao Y.M., Chandra S., Mostaghimi J. 1996. Capillary effects during droplet impact on a solid surface. Physics of Fluids 8 (3): 650–659. DOI: 10.1063/1.868850

 

Popinet S. 2018. Numerical models of surface tension. Annual Review of Fluid Mechanics 50 (1): 49–75. DOI: 10.1146/annurev--fluid-122316-045034

 

Rabaron A., Cavé G., Puisieux F., Seiller M. 1993. Physical methods for measurement of the HLB of ether and ester non-ionic surface-active agents: H-NMR and dielectric constant. International Journal of Pharmaceutics 99 (1): 29–36. DOI: 10.1016/0378-5173(93)90319-B

 

Rogalski L., Marozas J. 1999. Niektóre właściwości fizyczne cieczy łączonych ochronno-nawozowych w zależności od koncentracji mocznika. [Some physical properites of combined fertilizer-pesticide solutions in relation to their urea concentration]. Progress in Plant Protection/Postępy w Ochronie Roślin 39 (2): 651–654.

 

Seo J., Lee J.S., Kim H.Y., Yoon S.S. 2015. Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall. Experimental Thermal and Fluid Science 61: 121–129. DOI: 10.1016/j.expthermflusci.2014.10.019

 

Taylor M., Urquhart A.J., Zelzer M., Davies M.C., Alexander M.R. 2007. Picoliter water contact angle measurement on polymers. Lang­muir 23 (13): 6875–6878. DOI: 10.1021/la070100j

 

Tredenick E.C., Farrell T.W., Forster W.A., Psaltis S.T.P. 2017. Nonlinear porous diffusion modeling of hydrophilic ionic agrochemicals in astomatous plant cuticle aqueous pores: a mechanistic approach. Frontiers in Plant Science 8: 746. DOI: 10.3389/fpls.2017.00746

 

Williams D., Kuhn A., O’Bryon T., Konarik M., Huskey J. 2011. Contact angle measurements using cellphone cameras to implement the Bikerman method. Galvanotechnik 102 (8): 1718–1725.

 

Woźnica Z., Nalewaja J.D., Messersmith C.G., Milkowski P. 2003. Quinclorac efficacy as affected by adjuvants and spray carrier water. Weed Technology 17 (3): 582–588. DOI: 10.1614/0890-037X(2003)017[0582:QEAABA]2.0.CO;2

 

Xu L., Zhu H., Ozkan H.E., Bagley W.E., Derksen R.C., Krause C.R. 2010a. Adjuvant effects on evaporation time and wetted area of droplets on waxy leaves. Transactions of the American Society of Agricultural and Biological Engineers 53 (1): 13–20. DOI: 10.13031/2013.29495

 

Xu L., Zhu H., Ozkan H.E., Thistle H.W. 2010b. Evaporation rate and development of wetted area of water droplets with and without surfactant at different locations on waxy leaf surfaces. Biosystems Engineering 106 (1): 58–67. DOI: 10.1016/j.biosystem­seng.2010.02.004

 

Yang M.-W., Lin S.-Y. 2003. A method for correcting the contact angle from the θ/2 method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 220 (1–3): 199–210. DOI: 10.1016/S0927-7757(03)00064-5

 

Young T. 1805. An essay on the cohesion of fluids. Philos. Philosophical Transactions of the Royal Society of London 95 (3): 65–87. DOI: 10.1098/rstl.1805.0005

 

Yu Y., Zhu H., Frantz J.M., Reding M.E., Chan K.C., Ozkan H.E. 2009a. Evaporation and coverage area of pesticide droplets on hairy and waxy leaves. Biosystems Engineering 104 (3): 324–334. DOI: 10.1016/j.biosystemseng.2009.08.006

 

Yu Y., Zhu H., Ozkan H.E., Derksen R.C., Krause C.R. 2009b. Evaporation and deposition coverage area of droplets containing insecti­cides and spray additives on hydrophilic, hydrophobic, and crabapple leaf surfaces. Transactions of the American Society of Agricul­tural and Biological Engineers 52 (1): 39–49. DOI: 10.13031/2013.25939

 

Zabkiewicz J.A. 2003. Foliar interactions and uptake of agrichemical formulations – present limits and future potential. s. 237–251. W: Chemistry of Crop Protection: Progress and Prospects in Science and Regulation (G. Voss, G. Ramos, red.). Wyd. I. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 395 ss.

 

Zabkiewicz J.A. 2007. Spray formulation efficacy – holistic and futuristic perspectives. Crop Protection 26 (3): 312–319. DOI: 10.1016/j. cropro.2005.08.019

 

Zheng L., Cao C., Cao L., Chen Z., Huang Q., Song B. 2018. Bounce behavior and regulation of pesticide solution droplets on rice leaf surfaces. Journal of Agricultural and Food Chemistry 66 (44): 11560–11568. DOI: 10.1021/acs.jafc.8b02619

 

Zhu F., Cao C., Cao L., Li F., Du F., Huang Q. 2019. Wetting behavior and maximum retention of aqueous surfactant solutions on tea leaves. Molecules 24 (11): 2094. DOI: 10.3390/molecules24112094

 

Zhu H., Lin J.-L. 2016. Coverage area and fading time of surfactant-amended herbicidal droplets on cucurbitaceous leaves. Transactions of the American Society of Agricultural and Biological Engineers 59 (3): 829–838. DOI: 10.13031/trans.59.11427

Progress in Plant Protection (2024) 64: 5-11
Data pierwszej publikacji on-line: 2024-02-23 15:45:37
http://dx.doi.org/10.14199/ppp-2024-001
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy