Progress in Plant Protection

Wpływ zasolenia podłoża hodowlanego na wzrost grzybów entomopatogeniczych z rodzajów Beauveria i Metarhizium
The effect salinity culture medium on the growth of entomopathogenic fungi of Beauveria and Metarhizium genera

Anna Majchrowska-Safaryan, e-mail: anna.majchrowska-safaryan@uph.edu.pl

Uniwersytet w Siedlcach, Wydział Nauk Rolniczych, Instytut Rolnictwa i Ogrodnictwa, Bolesława Prusa 14, 08-110 Siedlce, Polska
Streszczenie

Celem przeprowadzonych badań było określenie wpływu wzrastającego stężenia NaCl (jednego z istotnych czynników stresogennych dla roślin uprawnych) na wzrost grzybów entomopatogenicznych z rodzajów Beauveria i Metarhizium w warunkach in vitro. W warunkach laboratoryjnych zbadano wpływ 1, 3, 5 i 15% stężenia NaCl na wzrost kolonii czterech wybranych gatunków grzybów Beauveria bassia­na, Beauveria brongniartii, Metarhizium anisopliae i Metarhizium flavoviride. Testowane stężenia dodawano do podłoża hodowlanego Sabourauda (SDA). Obserwacje wzrostu kolonii prowadzono co 5 dni aż do 20. dnia mierząc średnicę kolonii w mm. Przeprowadzone ba­dania wykazały, że zastosowane w doświadczeniu stężenia NaCl działały w sposób zróżnicowany na wzrost kolonii testowanych gatunków grzybów entomopatogenicznych z rodzajów Beauveria i Metarhizium. Nieznaczne zasolenie podłoża hodowlanego (1% stężenie NaCl), niezależnie od terminu prowadzonej obserwacji wpłynęło na zwiększenie wzrostu kolonii B. bassiana i B. brongniartii, a ograniczało wzrost M. flavoviride. W 20. dniu prowadzonej obserwacji 3% zasolenie istotnie statystycznie stymulowało wzrost szczepu B. bassianai M. flavoviride. Wyższe stężenie NaCl ograniczało wzrost testowanych szczepów, przy czym największą odporność wykazał grzyb M. fla­voviride, co wskazywać może go jako gatunek wykazujący się stosunkowo wysokim potencjałem odporności na zasolenie. 15% zasolenie całkowicie hamowało wzrost wszystkich badanych grzybów entomopatogenicznych.

 

The aim of the research was to determine the effect of increasing NaCl concentration (one of the important stress factors for crop plants) on the growth of entomopathogenic fungi of the genus Beauveria and Metarhizium in vitro. The influence of 1, 3, 5 and 15% NaCl con­centration on the growth of colonies of four selected species of fungi Beauveria bassiana, Beauveria brongniartii, Metarhizium anisopliae and Metarhizium flavoviride was examined in laboratory conditions. Test concentrations were added to Sabouraud’s culture medium (SDA). Colony growth observations were made every 5 days until day 20, measuring the colony diameter in mm. The conducted research showed that the NaCl concentrations used in the experiment had a differential effect on the growth of colonies of the tested species of entomopathogenic fungi of the genus Beauveria and Metarhizium. A slight salinity of the culture medium (1% NaCl concentration), regardless of the date of observation, increased the growth of B. bassiana and B. brongniartii colonies and limited the growth of M. fla­voviride. On the 20th day of observation, 3% salinity statistically significantly stimulated the growth of the B. bassiana and M. flavoviride strains. A higher concentration of NaCl limited the growth of the tested strains, with M. flavoviride showing the greatest resistance, which may indicate it as a species with a relatively high potential for resistance to salinity. 15% salinity completely inhibited the growth of all entomopathogenic fungi tested.

Słowa kluczowe
stres solny; grzyby entomopatogeniczne; wzrost kolonii; in vitro; salt stress; entomopathogenic fungi; colony growth
Referencje

Ahmad I., Jiménez-Gasco M. del M., Luthe D.S., Barbercheck M.E. 2020. Systemic colonization by Metarhizium robertsii enhan­ces cover crop growth. Journal of Fungi 6 (2): 64. DOI: 10.3390/jof6020064

 

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25 (17): 3389–3402. DOI: 10.1093/nar/25.17.3389

 

Badawy A.A., Alotaibi M.O., Abdelaziz A.M., Osman M.S., Khalil A.M., Saleh A.M., Mohammed A.E., Hashem A.H. 2021. Enhancement of seawater stress tolerance in barley by the endophytic fungus Aspergillus ochraceus. Metabolites 11 (7): 428. DOI: 10.3390/metabo11070428

 

Bałazy S. 2004. Znaczenie obszarów chronionych dla zachowania zasobów grzybów entomopatogenicznych. [Significance of protected areas for the preservation of entomopathogenic fungi]. Kosmos Problemy Nauk Biologicznych 53 (1) (262): 5–16.

 

Bidochka M.J., Kamp A.M., Lavender T.M., Dekoning J., De Croos J.N.A. 2001. Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Applied and Environmental Microbiology 67 (3): 1335–1342. DOI: 10.1128/AEM.67.3.1335-1342.2001

 

Cazorla D., Morales-Moreno P., Acosta Quintero M.E. 2007. Effects of thermal, saline and pH gradients on in vitro germination of a native isolate of Beauveria bassiana (Bálsamo) vuillemin, pathogenic to Rhodnius prolixus and Triatoma maculata. Revista Cientifica de la Facultad de Ciencias Veterinarias 17: 627–631.

 

Chaudhary P.J., Raghunandan B.L., Patel H.K., Mehta P.V., Patel N.B., Sonth B., Dave A., Bagul S.Y., Divya M., Jain D., Alsahli A.A., Kaushik P. 2023. Plant growth-promoting potential of entomopathogenic fungus Metarhizium pinghaense AAUBC-M26 under elevated salt stress in tomato. Agronomy 13 (6): 1577. DOI: 10.3390/agronomy13061577

 

Chen X., Xu C., Qian Y., Liu R., Zhang Q., Zeng G., Zhang X., Zhao H., Fang W. 2016. MAPK cascade-mediated regulation of pa­thogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environmental Microbiology 18 (3): 1048–1062. DOI: 10.1111/1462-2920.13198

 

Chourasia K.N., Lal M.K., Tiwari R.K., Dev D., Kardile H.B., Patil V.U., Kumar A., Vanishree G., Kumar D., Bhardwaj V., Meena J.K., Mangal V., Shelake R.M., Kim J.-Y., Pramanik D. 2021. Sanility stress in potato: understanding physiological, biochemical and molecular responses. Life 11 (6): 545. DOI: 10.3390/life11060545

 

Dara S.K., Dara S.S.R., Dara S.S. 2017. Impact of entomopathogenic fungi on the growth, development, and health of cabbage growing under water stress. American Journal of Plant Sciences 8 (6): 1224–1233. DOI: 10.4236/ajps.2017.86081

 

Dimpka C.O., Merten D., Svatos A., Büchel G., Kothe E. 2009. Siderophores mediate reduced and increased uptake of cad­mium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology 107 (5): 1687–1696. DOI: 10.1111/j.1365-2672.2009.04355.x

 

Dodd I.C., Pérez-Alfocea F. 2012. Microbial amelioration of crop salinity stress. Journal of Experimental Botany 63 (9): 3415–3428. DOI: 10.1093/jxb/ers033

 

Gupta S., Schillaci M., Walker R., Smith P.M., Watt M., Roessner U. 2021. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil 461: 219–244. DOI: 10.1007/ s11104-020-04618-w

 

Humber R.A. 2012. Identification of entomopathogenic fungi. s. 151–187. W: Manual of Techniques in Invertebrate Pathology (L.A. Lacey, red.). Academic Press, London, UK, 504 ss. Paperback ISBN 978-012-386-89-92. eBook ISBN 978-012-386-90-05.

 

Inglis G.D., Enkerli J., Goettel M.S. 2012. Laboratory techniques used for entomopathogenic fungi. Hypocreales. Chapter VII. s. 189–253. W: Manual of Techniques in Invertebrate Pathology (L.A. Lacey, red.). Academic Press, London, UK, 504 ss. Pa­perback ISBN 978-012-386-89-92. eBook ISBN 978-012-386-90-05.

 

Jaber L.R., Ownley B.H. 2018. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control 116: 36–45. DOI: 10.1016/j.biocontrol.2017.01.018

 

Jamil A., Riaz S., Ashraf M., Foolad M.R. 2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences 30 (5): 435–458. DOI: 10.1080/07352689.2011.605739

 

Jan F.G., Hamayun M., Hussain A., Iqbal A., Jan G., Khan S.A., Khan H., Le I.-J. 2019. A promising growth promoting Meyero­zyma caribbica from Solanum xanthocarpum alleviated stress in maize plants. Bioscience Reports 39 (10): BSR20190290. DOI: 10.1042/BSR20190290

 

Klinsukon C., Lumyong S., Kuyper T.W., Boonlue S. 2021. Colonization by arbuscular mycorrhizal fungi improves salinity to­lerance of eucalyptus (Eucalyptus camaldulensis) seedlings. Scientific Reports 11: 4362. DOI: 10.1038/s41598-021-84002-5

 

Kovač M., Gorczak M., Wrzosek M., Tkaczuk C., Pernek M. 2020. Identification of entomopathogenic fungi as naturally occurring enemies of the invasive oak lace bug, Corythucha arcuata (Say) (Hemiptera: Tingidae). Insects 11 (10): 679. DOI: 10.3390/ insects11100679

 

Kumar V., Singh P., Sharma J., Sharma A. 2022. Role of brassinosteroids in plants responses to salinity stress: A review. Journal of Applied and Natural Science 14 (2): 582–599. DOI: 10.31018/jans.v14i2.3466

 

Liang W., Ma X., Wan P., Liu L. 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Commu­nications 495 (1): 286–291. DOI: 10.1016/j.bbrc.2017.11.043

 

Liang-De L., Ben-Shui S., Jin-Yu L., Ding-Feng W., Guang-Yuan W.U. 2021. Effects of salt stress on the growth and gene expres­sions of the entomopathogenic fungus Isaria cateniannulata. Mycosystema 40 (8): 2024–2042. DOI: 10.13346/j.mycosyste­ma.210088

 

Lozano-Tovar M.D., Garrido-Jurado I., Quesada-Moraga E., Raya-Ortega M.C., Trapero-Casas A. 2017. Metarhizium brunneum and Beauveria bassiana release secondary metabolites with antagonistic activity against Verticillium dahliae and Phytophthora megasperma olive pathogens. Crop Protection 100: 186–195. DOI: 10.1016/j.cropro.2017.06.026

 

Majchrowska-Safaryan A., Tkaczuk C. 2023. Wpływ bionawozów zawierających substancje humusowe na wzrost grzybów z ro­dzaju Beauveria i Metarhizium w warunkach in vitro. [The effect of biofertilizers containing humic substances on the growth of Beauveria and Metarhizum fungi in vitro]. Progress in Plant Protection 63 (2): 73–79. DOI: 10.14199/ppp-2023-008

 

Majchrowska-Safaryan A., Tkaczuk C., Baj-Wójtowicz B. 2023. Występowanie grzybów entomopatogenicznych w glebach sie­dlisk o zróżnicowanym użytkowaniu. Agronomy Science 78 (1): 5–18. DOI: 10.24326/as.2023.4956

 

Mantzoukas S., Eliopoulos P.A. 2020. Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Applied Sciences 10 (1): 360. DOI: 10.3390/app10010360

 

Raad M., Glare T.R., Brochero H.L., Müller C., Rostás M. 2019. Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against in­sects. Frontiers in Microbiology 10: 615. DOI: 10.3389/fmicb.2019.00615

 

Rehner S.A., Minnis A.M., Sung G.-H., Luangsa-ard J.J., Devotto L., Humber R.A. 2011. Phylogeny and systematics of the ana­morphic, entomopathogenic genus Beauveria. Mycologia 103 (5): 1055–1073. DOI: 10.3852/10-302

 

Santo A., Mattana E., Frigau L., Pastor A.M., Morelló M.C.P., Bacchetta G. 2017. Effects of NaCl stress on seed germination and seedling development of Brassica insularis Moris (Brassicaceae). Plant Biology 19 (3): 368–376. DOI: 10.1111/plb.12539

 

Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W. and Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109 (16): 6241–6246. DOI: 10.1073/pnas.1117018109

 

Shahbaz M., Ashraf M., Al-Qurainy F., Harris P.J.C. 2012. Salt tolerance in selected vegetable crops. Critical Reviews in Plant Sciences 31 (4): 303–320. DOI: 10.1080/07352689.2012.656496

 

Shahid M.A., Pervez M.A., Balal R.M., Mattson N.S., Rashid A., Ahmad R., Ayyub C.M., Abbas T. 2011. Brassinosteriod (24-epi­brassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science 5 (5): 500–510.

 

Tkaczuk C. 2008. Występowanie i potencjał infekcyjny grzybów owadobójczych w glebach agrocenoz i środowisk seminatural­nych w krajobrazie rolniczym. Rozprawa Naukowa nr 94. Wydawnictwo Akademii Podlaskiej, Siedlce, 160 ss.

 

Tkaczuk C., Król A., Majchrowska-Safaryan A., Nicewicz Ł. 2014. The occurrence of entomopathogenic fungi in soils from fields cultivated in a conventional and organic system. Journal of Ecological Engineering 15 (4): 137–144. DOI: 10.12911/22998993.1125468

 

Tkaczuk C., Majchrowska-Safaryan A., Harasimiuk M. 2016. Występowanie oraz potencjał infekcyjny grzybów entomopatoge­nicznych w glebach z pól uprawnych, łąk i siedlisk leśnych. [The occurrence and infective potential of entomopathogenic fungi in the soil of arable fields, meadows and forest habitats]. Progress in Plant Protection 56 (1): 5–11. DOI: 10.14199/ppp-2016- 001

 

Tomilova O.G., Kryukova N.A., Efimova M.V., Kolomeichuk L.V., Kovtun I.S., Glupov V.V. 2023. The endophytic entomopa­thogenic fungus Beauveria bassiana alleviates adverse effects of salt stress in potato plants. Horticulturae 9 (10): 1140. DOI: 10.3390/horticulturae9101140

 

Vega F.E. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110 (1): 4–30. DOI: 10.1080/00275514.2017.1418578

 

Wasilewska-Nascimento B. 2021. Niedoceniony potencjał grzybów owadobójczych w uprawie ziemniaka. [The understimated potential of entomopathogenic fungi in potato cultivation]. Ziemniak Polski 4: 40–48.

 

Yang Y., Guo Y. 2018. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist 217 (2): 523–539. DOI: 10.1111/nph.14920

 

Zimowska B., Król E.D. 2019. Entomopatogeniczne grzyby i ich znaczenie biocenotyczne. [Entomopathogenic fungi an their biocenotic importance]. Advancements of Microbiology – Postępy Mikrobiologii 58 (4): 471–482. DOI: 10.21307/ PM-2019.58.4.471

Progress in Plant Protection (2024) 64: 36-42
Data pierwszej publikacji on-line: 2024-03-25 15:12:54
http://dx.doi.org/10.14199/ppp-2024-004
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy