Bakterie symbiotyczne związane z nicieniami owadobójczymi z rodziny Steinernematidae i Heterorhabditidae w biologicznej ochronie roślin
Symbiotic bacteria associated with entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae in biological plant protection
Katarzyna Dubaj, e-mail: k.dubaj@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaAnna Filipiak, e-mail: a.filipiak@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaStreszczenie |
Nicienie owadobójcze z rodziny Steinernematidae (Filipjev, 1934) i Heterorhabditidae (Poinar, 1976) obejmują ponad 90 gatunkówi związane są symbiotycznie z bakteriami z rodzaju Xenorhabdus (Poinar, 1979) i Photorhabdus (Boemare, 1993). Nicienie te uznane są za obiecujące czynniki biologicznego zwalczania wielu gatunków owadów szkodliwych w uprawach. Nicienie pełnią rolę wektorów, umożliwiając bakteriom wniknięcie do ciała owada, natomiast bakterie po zabiciu owada zapewniają nicieniom stały dostęp do pożywienia oraz środowisko do rozmnażania. Bakterie Xenorhabdus i Photorhabdus wykazują bliskie pokrewieństwo filogenetyczne, jednak różnią się specyficznością względem żywicieli oraz wytwarzaniem różnych antybiotyków i toksyn owadobójczych. Dzięki tej symbiozie, ze względu na silne właściwości owadobójcze oraz szeroki zakres działania, z powodzeniem zostały wdrożone w programach integrowanej ochrony roślin przed szkodnikami na całym świecie. W pracy przedstawiono przegląd literatury dotyczącej symbiozy między bakteriami a nicieniami oraz ich zależność w biologicznej ochronie roślin.
Entomopathogenic nematodes in the family Steinernematidae (Filipjev, 1934) and Heterorhabditidae (Poinar, 1976) include more than 90 species and are symbiotically related to bacteria in the genera Xenorhabdus (Poinar, 1979) and Photorhabdus (Boemare, 1993). These nematodes are recognized as promising agents for biological control of many insect pest species in crops. The nematodes act as vectors, allowing the bacteria to enter the insect’s body, while the bacteria, after killing the insect, provide the nematodes with continued access to food and an environment for reproduction. Xenorhabdus and Photorhabdus bacteria are closely related phylogenetically, but differ in their host specificity and production of different antibiotics and insecticidal toxins. Due to this symbiosis, they have been successfully implemented in integrated pest management programs around the world due to their strong insecticidal properties and wide range of action. This work presents a review of the symbiosis between bacteria and nematodes and their relationship in biological plant protection. |
Słowa kluczowe |
nicienie owadobójcze; bakterie Xenorhabdus i Photorhabdus; symbioza mutualistyczna; entomopathogenic nematodes; Xenorhabdus and Photorhabdus bacteria; mutualistic symbiosis |
Referencje |
Abd-Elgawad M.M.M. 2022. Xenorhabdus spp.: an overview of the useful facets of mutualistic bacteria of entomopathogenic nematodes. Life 12 (9): 1360. DOI: 10.3390/life12091360
Abd El-Raheem A.M., Elmasry A.M.A., Elbrense H., Vergara-Pineda S. 2022. Photorhabdus and Xenorhabdus as symbiotic bacteria for bio-control housefly (Musca domestica L.). Pakistan Journal of Biological Sciences 25 (7): 586–601. DOI: 10.3923/ pjbs.2022.586.601
Akhurst R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Microbiology 121 (2): 303–309. DOI: 10.1099/00221287- 121-2-303
Akhurst R.J., Boemare N.E. 1988. A numerical taxonomic study of the genus Xenorhabdus (enterobacteriacea) and proposed elevation of the subspecies of X. nematophilus to species. Journal of General Microbiology 134 (7): 1835–1845. DOI: 10.1099/00221287-134-7-1835
Akhurst R.J., Boemare N.E. 1993. Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List no. 47. International Journal of Systematic and Evolutionary Microbiology 43 (4): 864–865. DOI: 10.1099/00207713-43-4-864
Askary T.H. 2010. Nematodes as biocontrol agents. s. 347–378. W: Sociology, Organic Farming, Climate Change and Soil Science (E. Lichtfouse, red.). Springer, Dordrecht, Netherlands. DOI: 10.1007/978-90-481-3333-8_13
Boemare N., Laumond C., Mauleon H. 1996. The entomopathogenic nematode-bacterium complex: biology, life cycle and vertebrate safety. Biocontrol Science and Technology 6 (3): 333–346. DOI: 10.1080/09583159631316
Chaston J.M., Suen G., Tucker S.L., Andersen A.W., Bhasin A., Bode E., Bode H.B., Brachmann A.O., Cowles C.E., Cowles K.N., Darby C., de Léon L., Drace K., Du Z., Givaudan A., Herbert Tran E.E., Jewell K.A., Knack J.J., Krasomil-Osterfeld K.C., Goodrich-Blair H. 2011. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLOS ONE 6 (11): e27909. DOI: 10.1371/journal.pone.0027909
Ciche T.A., Ensign J.C. 2003. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Applied and Environmental Microbiology 69 (4): 1890–1897. DOI: 10.1128/AEM.69.4.1890-1897.2003
Dowds B.C., Peters A. 2002. Virulence mechanisms. s. 79–98. W: Entomopathogenic Nematology (R. Gaugler, red.). CABI Publishing, Wallingford, UK. ISBN 9780851995670. DOI: 10.1079/9780851995670.0099
Duncan L.W., Graham J.H., Dunn D.C., Zellers J., McCoy C.W., Nguyen K. 2003. Incidence of endemic entomopathogenic nematodes following application of Steinernema riobrave for control of Diaprepes abbreviatus. Journal of Nematology 35 (2): 178–186.
Ekspertyza 2021. Zwiększenie efektywności integrowanej ochrony rzepaku ozimego zgodnie z założeniami Europejskiego Zielonego Ładu. Wydanie II (M. Mrówczyński, red.). Polskie Stowarzyszenie Producentów Oleju, Instytut Ochrony Roślin – Państwowy Instytut Badawczy, 182 ss.
Elbrense H., Elmasry A.M.A., Seleiman M.F., Al-Harbi M.S., El-Raheem A.M.A. 2021. Can symbiotic bacteria (Xenorhabdus and Photorhabdus) be more efficient than their entomopathogenic nematodes against pieris rapae and pentodon algerinus larvae? Biology 10 (10): 999. DOI: 10.3390/BIOLOGY10100999
Forst S., Dowds B., Boemare N., Stackebrandt E. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annual Review of Microbiology 51 (1): 47–72. DOI: 10.1146/annurev.micro.51.1.47
Forst S., Nealson K. 1996. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews 60 (1): 21–43. DOI: 10.1128/mmbr.60.1.21-43.1996
Georgis R., Poinar Jr G.O. 1984. Greenhouse control of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) by Heterorhabditid and Steinernematid nematodes. Environmental Entomology 13 (4): 1138–1140. DOI: 10.1093/ ee/13.4.1138
Guy A., Gaffney M., Kapranas A., Griffin C.T. 2017. Conditioning the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis by pre-application storage improves efficacy against black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) at low and moderate temperatures. Biological Control 108: 40–46. DOI: 10.1016/j.biocontrol.2017.02.005
Hinchliffe S.J. 2013. Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. The Open Toxinology Journal 3 (1): 101–118. DOI: 10.2174/1875414701003010101
Imhoff J.F. 2005. Enterobacteriales. s. 587–850. W: Bergey’s Manual® of Systematic Bacteriology. Springer, Boston, MA. DOI: 10.1007/s13199-019-00660-0
Jaffuel G., Mäder P., Blanco-Perez R., Chiriboga X., Fliessbach A., Turlings T.C.J., Campos-Herrera R. 2016. Prevalence and activity of entomopathogenic nematodes and their antagonists in soils that are subject to different agricultural practices. Agriculture, Ecosystems and Environment 230: 329–340. DOI: 10.1016/j.agee.2016.06.009
Journey A.M., Ostlie K.R. 2000. Biological control of the western cornrootworm (Coleoptera: Chrysomelidae) using the entomopathogenic nematode, Steinernema carpocapsae. Environmental Entomology 29 (4): 822–831. DOI: 10.1603/0046-225X- 29.4.822
Kowalska J. 2001. Próba zastosowania nicieni owadobójczych oraz metody integrowanej w zwalczaniu pędraków chrabąszcza majowego Melolontha melolontha L. w uprawie leśnej. [An attempt to use insect-killing nematodes and an integrated method to control May beetle Melolontha melolontha L. grubs in a young forest culture]. Sylwan 2: 89–95.
Kowalska J. 2006. Wzajemne powiązania pomiędzy nicieniami owadobójczymi, owadami i bakteriami oraz ich wykorzystanie w praktyce. [Entomopathogenic nematodes, insects, bacteria and their relationship used in practice]. Wiadomości Parazytologiczne 52 (2): 93–98.
Kruk K., Dzięgielewska M. 2019. Wykorzystanie nicieni owadobójczych w biologicznej ochronie roślin. [The use of enthomopathogenic nematodes in biological plant protection]. Młodzi Naukowcy 11: 72–76.
Lewis E.E., Grewal P.S. 2005. Interactions with plant-parasitic nematodes. s. 349–361. W: Nematodes as Biocontrol Agent (P.S. Grewal, R.U. Ehlers, D.I. Shapiro-Ilan, red.). CABI Publishing, Wallingford, UK. ISBN 9780851990170. DOI: 10.1079/9780851990170.0349
Liu J., Berry R., Poinar G., Moldenke A. 1997. Phylogeny of Photorhabdus and Xenorhabdus species and strains as determined by comparison of partial 16s rRNA gene sequences. International Journal of Systematic Bacteriology 47 (4): 948–951. DOI: 10.1099/00207713-47-4-948
Lortkipanidze M.A., Gorgadze O.A., Kajaia G.S., Gratiashvili N.G., Kuchava M.A. 2016. Foraging behavior and virulence of some entomopathogenic nematodes. Annals of Agrarian Science 14 (2): 99–103. DOI: 10.1016/j.aasci.2016.05.009
Martens E.C., Vivas E.I., Heungens K., Cowles C.E., Goodrich-Blair H. 2004. Investigating mutualism between entomopathogenic bacteria and nematodes. s. 447–462. W: Proceedings of the Fourth International Congress of Nematology. Brill in Spain, June 8–13, 2002. DOI: 10.1163/9789004475236_045
Matuska-Łyżwa J., Huruk S., Wiatr M. 2012. Możliwości wykorzystania rodzimych populacji nicieni entomopatogennych w zwalczaniu pędraków chrabąszczowatych (Melolonthinae). [Potential of autochthonicpopulation of entomopathogenic nematodes in application to control of cockchafer grubs (Melolonthinae)]. Proceedings of ECOpole 6 (1): 293–296. DOI: 10.2429/proc.2012.6(1)040
Mráček Z., Bečvář S., Kindlmann P., Jersáková J. 2005. Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control 34 (1): 27–37. DOI: 10.1016/j.biocontrol.2005.03.023
Poinar G.O. 1990. Biology and taxonomy of Steinernematidae and Heterorhabditidae. s. 23–62. W: Entomopathogenic Nematodes in Biological Control (R. Gaugler, H.K. Kaya, red.). CRC Press, Boca Raton, FL, 381 ss. eBook ISBN 9781351071741. DOI: 10.1201/9781351071741
Qin X., Kao R., Yang H., Zhang G. 1998. Study on application of entomopathogenic nematodes of Steinernema bibionis and S. feltiae to control Anoplophora glabripennis and Holococerus insularis. Forest Research 1 (2): 179–185.
Sicard M., Tabart J., Boemare N.E., Thaler O., Moulia C. 2005. Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Parasitology 131 (5): 687–694. DOI: 10.1017/S0031182005008255
Simoes N., Rosa J.S. 1998. Pathogenicity of the complex Steinernema carpocapsae-Xenorhabdus nematophilus: molecular aspects related with the virulence. Pathogenicity of entomopathogenic nematodes versus insect defence mechanisms: impact on selection of virulent strains. European Commission, Brussels: 73–83.
Skwiercz A.T., Zapałowska A. 2018. Entomopathogenic nematodes in the soil of forests and nurseries. Sylwan 162 (12): 1018– 1028.
Tailliez P., Laroui C., Ginibre N., Paule A., Pagès S., Boemare N. 2010. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology 60 (8): 1921–1937. DOI: 10.1099/ijs.0.014308-0
Testa A.M., Shields E.J. 2017. Low labor “in vivo” mass rearing method for entomopathogenic nematodes. Biological Control 106: 77–82. DOI: 10.1016/j.biocontrol.2017.01.002
Thanwisai A., Tandhavanant S., Saiprom N., Waterfield N.R., Ke Long P., Bode H.B., Peacock S.J., Chantratita N. 2012. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLOS ONE 7 (9): e43835. DOI: 10.1371/journal.pone.0043835
Thomas G.M., Poinar Jr G.O. 1979. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic and Evolutionary Microbiology 29 (4): 352–360. DOI: 10.1099/00207713- 29-4-352
Tomalak M. 2000. Wykorzystanie nicieni owadobójczych w ochronie roślin. Ochrona Roślin 9: 2–3.
van Lenteren J.C. 2003. Commercial availability of biological control agents. s. 167–179. W: Quality Control and Production of Biological Control Agents. Theory and Testing Procedures. CABI Publishing, Wallingford, UK. ISBN 9780851996882. DOI: 10.1079/9780851996882.0167
Vashisth S., Chandel Y.S., Sharma P.K. 2013. Entomopathogenic nematodes – a review. Agricultural Reviews 34 (3): 163. DOI: 10.5958/j.0976-0741.34.3.001
Webster J.M., Chen G.H., Hu K., Li J.X. 2002. Bacterial metabolites. s. 99–114. W: Entomopathogenic Nematology (R. Gaugler, red.). CABI Publishing, Wallingford, UK. ISBN 9780851995670. DOI: 10.1079/9780851995670.0099 |
Progress in Plant Protection (2023) 63: 129-136 |
Data pierwszej publikacji on-line: 2023-07-25 14:50:56 |
http://dx.doi.org/10.14199/ppp-2023-014 |
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy |