Wpływ mikrocząstek i nanocząstek tlenku miedzi na wzrost grzybni Alternaria alternata, Botrytis cinerea i Fusarium oxysporum
Effects of copper oxide micro- and nanoparticles on Alternaria alternata, Botrytis cinerea and Fusarium oxysporum mycelium growth
Jolanta Kowalska, e-mail: j.kowalska@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaMałgorzata Antkowiak, e-mail: m.antkowiak@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaJoanna Krzymińska, e-mail: j.krzyminska@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaAlicja Tymoszuk, e-mail: Alicja.Tymoszuk@pbs.edu.pl
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich, Bernardyńska 6, 85-029 Bydgoszcz, PolskaMagdalena Osial, e-mail: mosial@ippt.pan.pl
Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk, Pawińskiego 5B, 02-106 Warszawa, PolskaAbstract |
Celem niniejszych badań było porównanie wpływu cząstek tlenku miedzi (CuxO) oraz nanocząstek tlenku miedzi (CuxO NPs) na wzrostin vitro wybranych patogenów roślinnych: Alternaria alternata, Botrytis cinerea i Fusarium oxysporum. W eksperymencie in vitro patogeny hodowane były na pożywce PDA zmodyfikowanej dodatkiem CuxO lub CuxO NPs w stężeniu 0, 100, 200, 500, 1000 lub 2000 mg/l. Zarówno CuxO, jak i CuxO NPs znacząco ograniczały wzrost grzybni wszystkich testowanych patogenów. W stosunku do A. alternata inhibicyjne działanie miało zastosowanie CuxO NPs w stężeniu 500 mg/l, ograniczające wzrost patogenu średnio o 76,64% w stosunku do kontroli.W przypadku B. cinerea odnotowano podobną zależność, zastosowane CuxO NPs w stężeniu 500 mg/l ograniczyło wzrost patogenu średnio o 70,94% i było najbardziej skuteczne. W przypadku F. oxysporum zastosowanie 1000 i 2000 mg/l CuxO NPs lub 2000 mg/l CuxO było skuteczne w ograniczeniu wzrostu grzybni patogenu, a inhibicja wyniosła blisko 100%. Chociaż CuxO NPs wykazały obiecujące właściwości przeciwgrzybicze, konieczne są dalsze badania w celu oceny ich aktywności in vivo, wpływu na środowisko, akumulacji w tkankach roślinnych i potencjalnej toksyczności dla innych organizmów. Zrozumienie, w jaki sposób te nanocząstki oddziałują na środowisko oraz jakie są ich szlaki degradacji ma kluczowe znaczenie dla ich bezpiecznego stosowania w rolnictwie.
The study aimed to compare the effect of CuxO micro- and nanoparticles (CuxO NPs) on the in vitro growth of selected plant pathogens: Alternaria alternata, Botrytis cinerea, and Fusarium oxysporum. In the in vitro experiment, pathogens were cultured on the PDA medium supplemented with CuxO or CuxO NPs at the concentration of 0, 100, 200, 500, 1000, or 2000 mg/l. Both CuxO and CuxO NPs significantly inhibited mycelial growth in all tested pathogens. In A. alternata, treatment with 500 mg/l of CuxO NPs was the most effective, reducing pathogen growth by an average of 76.64% compared to the control. A similar trend was observed in B. cinerea, where treatment with 500 mg/l CuxO NPs reduced pathogen growth by an average of 70.94%, indicating it as the most effective concentration. In contrast,F. oxysporum was only inhibited by 1000 and 2000 mg/l CuxO NPs or 2000 mg/l CuxO, which resulted in almost 100% growth inhibition. Although CuxO NPs showed promising antifungal properties, further study is necessary to evaluate their in vivo activity, environmental impact, plant tissue accumulation, and potential toxicity to non-target organisms. Understanding how these nanoparticles interact with the environment and their degradation pathways is vital for their safe application in agriculture. |
Key words |
oddziaływanie fungistatyczne; tlenek miedzi; nanotechnologia; zrównoważone rolnictwo; ochrona roślin; antifungal activity; copper oxide; nanotechnology; sustainable agriculture; plant protection |
References |
Abou-Salem E., Ahmed A.R., Elbagory M., Omara A.E.-D. 2022. Efficacy of biological copper oxide nanoparticles on controlling damping-off diseas and growth dynamics of sugar beet (Beta vulgaris L.) plants. Sustainability 14 (19): 12871. DOI: 10.3390/su141912871
Ajilogba C., Babalola O., Nikoro D. 2021. Nanotechnology as vehicle for biocontrol of plant diseases in crop production. s. 709–724. W: Food Security and Safety: African Perspectives (O. Babalola, red.). Springer Cham, Cham, Switzerland, 907 ss.
Al Abboud M.A., Alawlaqi M.M. 2011. Biouptake of copper and their impact on fungal fatty acids. Australian Journal of Basic and Applied Sciences 5 (11): 283–290.
Almond J., Sugumaar P., Wenzel M.N., Hill G., Wallis C. 2020. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 20 (1): 369–381. DOI: 10.1515/ epoly-2020-0041
Ashraf H., Anjum T., Riaz S., Ahmad I.S., Irudayaraj J., Javed S., Qaiser U., Naseem S. 2021. Inhibition mechanism of green-synthesized copper oxide nanoparticles from Cassia fistula towards Fusarium oxysporum by boosting growth and defense response in tomatoes. Environmental Science: Nano 8: 1729–1748. DOI: 10.1039/D0EN01281E
Banik S., Pérez-de-Luque A. 2017. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes, and crop plants. Spanish Journal of Agricultural Research 15 (2): e1005. DOI: 10.5424/sjar/2017152-10305
Bi K., Liang Y., Mengiste T., Sharon A. 2023. Killing softly: a roadmap of Botrytis cinerea pathogenicity. Trends in Plant Science 28 (2): 211–222. DOI: 10.1016/j.tplants.2022.08.024
Bikdeloo M., Ahsani Irvani M., Roosta H.R., Ghanbari D. 2021. Green synthesis of copper nanoparticles using rosemary extract to reduce postharvest decays caused by Botrytis cinerea in tomato. Journal of Nanostructures 11 (4): 834–841. DOI: 10.22052/JNS.2021.04.020
Bujok J., Gąsior-Głogowska M., Marszałek M., Trochanowska-Pauk N., Zigo F., Pavľak A., Komorowska M., Walski T. 2019. Applicability of FTIR-ATR method to measure carbonyls in blood plasma after physical and mental stress. BioMed Research International 2019: 2181370. DOI: 10.1155/2019/2181370
Chang N.-Y. 2011. Fourier transform infrared (FTIR) analysis of copper oxide thin films prepared by metal organic chemical vapor deposition (MOCVD). MRS Online Proceedings Library, Volume 293: Symposium U – Solid State Ionics III: 443. DOI: 10.1557/ PROC-293-443
Chidiamassamba S.B., Gomes S.I., Amorim M.J., Scott-Fordsmand J.J. 2024. Considering safe and sustainable by design alternatives – Environmental hazards of an agriculture nano-enabled pesticide to non-target species. Chemosphere 367: 143582. DOI: 10.1016/j. chemosphere.2024.143582
Consolo V.F., Torres-Nicolini A., Alvarez V.A. 2020. Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Scientific Reports 10 (1): 20499. DOI: 10.1038/ s41598-020-77294-6
DeMers M. 2022. Alternaria alternata as endophyte and pathogen. Microbiology 168 (3): 001153. DOI: 10.1099/mic.0.001153
El-Abeid S.E., Mosa M.A., El-Tabakh M.A., Saleh A.M., El-Khateeb M.A., Haridy M.S. 2024. Antifungal activity of copper oxide nanoparticles derived from Zizyphus spina leaf extract against Fusarium root rot disease in tomato plants. Journal of Nanobiotechnology 22 (1): 28. DOI: 10.1186/s12951-023-02281-8
Gherasim C., Pascariu P., Asandulesa M., Dobromir M., Doroftei F., Fifere N., Dascalu A., Airinei A. 2022. Copper oxide nanostructures: Preparation, structural, dielectric and catalytic properties. Ceramics International 48 (17): 25556–25568. DOI: 10.1016/j.ceramint.2022.05.235
Ghosh S., Sadhu A., Mandal A.H., Biswas J.K., Sarkar D., Saha S. 2024. Copper oxide nanoparticles as an emergent threat to aquatic invertebrates and photosynthetic organisms: a synthesis of the known and exploration of the unknown. Current Pollution Reports 11 (1): 6. DOI: 10.1007/s40726-024-00334-6
Hao Y., Cao X., Ma C., Zhang Z., Zhao N., Ali A., Rui Y. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science 8: 1332. DOI: 10.3389/fpls.2017.01332
Ibrahim A.S., Ali G.A., Hassanein A., Attia A.M., Marzouk E.R. 2022. Toxicity and uptake of CuO nanoparticles: evaluation of an emerging nanofertilizer on wheat (Triticum aestivum L.) plant. Sustainability 14 (9): 4914. DOI: 10.3390/su14094914
Ismail A.M., Mosa M.A., El-Ganainy S.M. 2023. Chitosan-decorated copper oxide nanocomposite: investigation of its antifungal activity against tomato gray mold caused by Botrytis cinerea. Polymers 15 (5): 1099. DOI: 10.3390/polym15051099
Jeong S.-W., Kim S.-D. 2009. Aggregation and transport of copper oxide nanoparticles in porous media. Journal of Environmental Monitoring 11: 1595–1600. DOI: 10.1039/B907658A
Jomeyazdian A., Pirnia M., Alaei H., Taheri A., Sarani S. 2024. Control of Fusarium wilt disease of tomato and improvement of some growth factors through green synthesized zinc oxide nanoparticles. European Journal of Plant Pathology 169: 333–345. DOI: 10.1007/ s10658-024-02831-2
Joshi R. 2018. A review of Fusarium oxysporum on its plant interaction and industrial use. Journal of Medicinal Plants Studies 6 (3): 112–115.
Kamel S.M., Elgobashy S.F., Omara R.I., Derbalah A.S., Abdelfatah M., El-Shaer A., Elsharkawy M.M. 2022. Antifungal activity of copper oxide nanoparticles against root rot disease in cucumber. Journal of Fungi 8 (9): 911. DOI: 10.3390/jof8090911
Kannan M., Bojan N., Swaminathan J., Zicarelli G., Hemalatha D., Zhang Y., Faggio C. 2023. Nanopesticides in agricultural pest management and their environmental risks: a review. International Journal of Environmental Science and Technology 20 (9): 10507–10532. DOI: 10.1007/s13762-023-04795-y
Krumova E., Benkova D., Stoyancheva G., Dishliyska V., Miteva-Staleva J., Kostadinova A., Elshoky H.A. 2024. Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO2 nanocomposites as nanopesticides against Fusarium solani and Alternaria solani. International Journal of Biological Macromolecules 268, Part 1: 131702. DOI: 10.1016/j.ijbiomac.2024.131702
Kumar Y., Tiwari K.N., Singh T., Raliya R. 2021. Nanofertilizers and their role in sustainable agriculture. Annals of Plant and Soil Research 23 (3): 238–255. DOI: 10.47815/apsr.2021.10067
La Torre A., Iovino V., Caradonia F. 2018. Copper in plant protection: current situation and prospects. Phytopathologia Mediterranea 57 (2): 201–236. DOI: 10.14601/Phytopathol_Mediterr-23407
Lamichhane J.R., Osdaghi E., Behlau F., Köhl J., Jones J., Aubertot J.-N. 2018. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development 38: 28. DOI: 10.1007/s13593-018-0503-9
López-Lima D., Mtz-Enriquez A.I., Carrión G., Basurto-Cereceda S., Pariona N. 2021. The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae 277: 109810. DOI: 10.1016/j. scienta.2020.109810
Malandrakis A.A., Kavroulakis N., Chrysikopoulos C.V. 2020. Synergy between Cu-NPs and fungicides against Botrytis cinerea. Science of the Total Environment 703: 135557. DOI: 10.1016/j.scitotenv.2019.135557
Mali S.C., Dhaka A., Githala C.K., Trivedi R. 2020. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports 27: e00518. DOI: 10.1016/j.btre.2020.e00518
Nagarajan R. 2008. Nanoparticles: building blocks for nanotechnology. s. 2–14. W: Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization (R. Nagarajan, T.A. Hatton, red.). ACS Symposium Series 996. American Chemical Society, Washington, DC, USA, 231 ss. ISBN 978-0-8412-6969-9. DOI: 10.1021/bk-2008-0996.fw001
Nagdalian A., Askerova A., Blinov A., Shariati M.A. 2024. Evaluation of the toxicity of copper oxide nanoparticles toward pea seeds. World Journal of Environmental Biosciences 13 (3): 23–30. DOI: 10.51847/A2gMbUMBUD
Nalci O.B., Nadaroglu H., Pour A.H., Gungor A.A., Haliloglu K. 2019. Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.). Plant Cell Tissue and Organ Culture 136 (6): 269–277. DOI: 10.1007/s11240-018-1512-8
Nazarov P.A., Baleev D.N., Ivanova M.I., Sokolova L.M., Karakozova M.V. 2020. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae 12 (3): 46–59. DOI: 10.32607/actanaturae.11026
Parada J., Tortella G., Seabra A.B., Fincheira P., Rubilar O. 2024. Potential antifungal effect of copper oxide nanoparticles combined with fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics 13 (3): 215. DOI: 10.3390/antibiotics13030215
Pourahmad J., Salami M., Zarei M.H. 2023. Comparative toxic effect of bulk copper oxide (CuO) and CuO nanoparticles on human red blood cells. Biological Trace Element Research 201 (1): 149–155. DOI: 10.1007/s12011-022-03149-y
Rajput V., Chaplygin V., Gorovtsov A., Fedorenko A., Azarov A., Chernikova N., Sushkova S. 2021. Assessing the toxicity and accumulation of bulk- and nano-CuO in Hordeum sativum L. Environmental Geochemistry and Health 43 (11): 2443–2454. DOI: 10.1007/ s10653-020-00681-5
Rajput V., Minkina T., Sushkova S., Behal A., Maksimov A., Blicharska E., Barsova N. 2020. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health 42 (1): 147–158. DOI: 10.1007/s10653-019-00317-3
Reza M.S., Afroze S., Bakar M.S., Saidur R., Aslfattahi N., Taweekun J., Azad A.K. 2020. Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature. Biochar 2 (1): 239–251. DOI: 10.1007/s42773-020-00048-0
Roy S., Hossain A. (red.). 2024. The Nanotechnology Driven Agriculture: The Future Ahead. CRC Press, Boca Raton FL, USA, 330 ss. eBook ISBN 978-1-0033-7644-6. DOI: 10.1201/9781003376446
Sadek M.E., Shabana Y.M., Sayed-Ahmed K., Abou Tabl A.H. 2022. Antifungal activities of sulfur and copper nanoparticles against cucumber postharvest diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum. Journal of Fungi 8 (4): 412. DOI: 10.3390/ jof8040412
Sahai A., Goswami N., Kaushik S.D., Tripathi S. 2016. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Applied Surface Science 390 (30): 974–983. DOI: 10.1016/j.apsusc.2016.09.005
Sardar M., Ahmed W., Al Ayoubi S., Nisa S., Bibi Y., Sabir M., Qayyum A. 2022. Fungicidal synergistic effect of biogenically synthesized zinc oxide and copper oxide nanoparticles against Alternaria citri causing citrus black rot disease. Saudi Journal of Biological Sciences 29 (1): 88–95. DOI: 10.1016/j.sjbs.2021.08.067
Sardella D., Gatt R., Valdramidis V.P. 2018. Turbidimetric assessment of the growth of filamentous fungi and the antifungal activity of zinc oxide nanoparticles. Journal of Food Protection 81 (6): 934–941. DOI: 10.4315/0362-028X.JFP-17-448
Shangguan W., Chen H., Zhao P., Cao C., Yu M., Huang Q., Cao L. 2024. Scenario-oriented nanopesticides: Shaping nanopesticides for future agriculture. Advanced Agrochem 3 (4): 265–278. DOI: 10.1016/j.aac.2024.07.002
Strambeanu N., Demetrovici L., Dragos D., Lungu M. 2014. Nanoparticles: definition, classification and general physical properties. s. 3–8. W: Nanoparticles’ Promises and Risks: Characterization, Manipulation, and Potential Hazards to Humanity and the Environment (M. Lungu, A. Neculae, M. Bunoiu, C. Biris, red.). Springer Cham, Cham, Switzerland, 355 ss. DOI: 10.1007/978-3-319-11728-7
Swędrzyńska D., Sawicka A. 2010. Wpływ miedzi na bakterie z rodzaju Azospirillum występujące w ryzosferze siewek kukurydzy i pszenicy. [The effect of copper on bacteria of the genus Azospirillum in the rhizosphere of maize and wheat seedlings]. Woda-Środowisko-Obszary Wiejskie/Water-Environment-Rural Areas 10 (2): 167–178.
Tiwari V., Bambharoliya K.S., Bhatt M.D., Nath M., Arora S., Dobriyal A.K., Bhatt D. 2024. Application of green synthesized copper oxide nanoparticles for effective mitigation of Fusarium wilt disease in roots of Cicer arietinum. Physiological and Molecular Plant Pathology 131: 102244. DOI: 10.1016/j.pmpp.2024.102244
Troncoso-Rojas R., Tiznado-Hernández M.E. 2014. Alternaria alternata (black rot, black spot). s. 147–187. W: Postharvest Decay: Control Strategies 1st Edition (S. Bautista-Baños, red.). Academic Press, Cambridge, MA, USA, 394 ss. eBook ISBN 978-0-1241-1568-2.
Williamson B., Tudzynski B., Tudzynski P., Van Kan J.A. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8 (5): 561–580. DOI: 10.1111/j.1364-3703.2007.00417.x
Yadav A., Yadav K., Abd-Elsalam K.A. 2023. Exploring the potential of nanofertilizers for sustainable agriculture. Plant Nano Biology 5 (1): 100044. DOI: 10.1016/j.plana.2023.100044
Zuriegat Q., Zheng Y., Liu H., Wang Z., Yun Y. 2020. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Molecular Plant Patology 22 (7): 882–895. DOI: 10.1111/mpp.13068 |
Progress in Plant Protection (2025) : 0-0 |
First published on-line: 2025-08-22 08:20:23 |
http://dx.doi.org/10.14199/ppp-2025-015 |
Full text (.PDF) BibTeX Mendeley Back to list |