Wpływ mikroorganizmów i olejku tatarakowego (Acorus calamus L.) na zachowanie izofetamidu w sałacie (Lactuca sativa L.)
The influence of microorganisms and calamus oil (Acorus calamus L.) on the behavior of isofetamid in lettuce (Lactuca sativa L.)
Weronika Piątek, e-mail: w.rogowska@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska| Abstract |
Celem badania było określenie wpływu czynników biologicznych – mikroorganizmów (bakterii Pseudomonas spp. i drożdży Saccharomyces cerevisiae) oraz tatarakowego olejku eterycznego (Acorus calamus L.), stosowanych łącznie lub oddzielnie, na zachowanie się izofetamidu w sałacie (Lactuca sativa L.). Sałatę poddano działaniu fungicydu zawierającego izofetamid (3,6 mg/roślina), a po upływie2 godzin przeprowadzono zabiegi: wariant 1 – olejek tatarakowy (12%), wariant 2 – olejek tatarakowy (12%) + Pseudomonas (106 jtk/ml), wariant 3 – olejek tatarakowy (12%) + Saccharomyces cerevisiae (106 jtk/ml). Grupę kontrolną stanowiły rośliny sałaty poddane jedynie działaniu izofetamidu. Po aplikacji izofetamidu, oznaczono jego stężenie za pomocą chromatografii cieczowej sprężonej z tandemową spektrometrią mas (LC-MS/MS) i wyznaczono dynamiki zanikania tego związku w liściach sałaty. Analiza wykładniczych modeli rozkładu potwierdziła wpływ czynników biologicznych na tempo degradacji izofetamidu, przy wysokim dopasowaniu danych (R² = 0,8629–0,9749). W kontroli czas połowicznego rozkładu izofetamidu wyniósł DT50 = 13,2 dnia. Najszybszy rozkład obserwowano w wariancie łączącym olejek tatarakowy z Pseudomonas (DT50 = 7,4 dnia). Wyniki badań wskazują, że czynniki biologiczne stosowane łącznie z izofetamidem wpływają na zachowanie izofetamidu w liściach sałaty.
The aim of the study was to determine the effect of biological factors – microorganisms (Pseudomonas spp. and Saccharomyces cerevisiae) and calamus essential oil (Acorus calamus L.), used combined or separately, on the behavior of isofetamid in lettuce (Lactucasativa L.). The lettuce was exposed to fungicide containing isofetamid (3.6 mg/plant), and after 2 hours, the following treatments were carried out: variant 1 – calamus oil (12%), variant 2 – calamus oil (12%) + Pseudomonas (106 CFU/ml), variant 3 – calamus oil (12%) + Saccharomyces cerevisiae (106 CFU/ml). The control group included lettuce plants treated only with isofetamid. After the application of isofetamid, its concentration was determined by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) the dynamics of the compound’s loss in lettuce leaves were determined. Analysis of exponential degradation models confirmed the influence of biological factors on the rate of isofetamid degradation, with a high data fit (R² = 0.8629–0.9749). In the control group, the half-life of isofetamid was DT50 = 13.2 days. The fastest degradation was observed in the variant combining calamus oil with Pseudomonas(DT50 = 7.4 days). The results of the study indicate that biological agents used in combination with isofetamid affect the behavior of the isofetamid in lettuce leaves. |
| Key words |
| sałata; mikroorganizmy; fungicyd; olejek tatarakowy; degradacja izofetamidu; lettuce; microorganisms; fungicide; calamus essential oil; isofetamid degradation |
| References |
|
Chen S., Luo J., Hu M., Geng P., Zhang Y. 2012. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment. PLoS ONE 7 (2): e30862. DOI: 10.1371/journal.pone.0030862
Cignola R., Carminati G., Natolino A., Di Francesco A. 2024. Effects of bioformulation prototype and bioactive extracts from Agaricus bisporus spent mushroom substrate on controlling Rhizoctonia solani of Lactuca sativa L. Frontiers in Plant Science 15: 1466956. DOI: 10.3389/fpls.2024.1466956
de Carvalho Brito R., da Silva Fontes L., da Silva P.H.S., de Sousa Santana C., Barbosa D.R.S. 2022. Essential oils from Betula lenta, Cinnamomum cassia, Citrus aurantium var. Amara and Acorus calamus as biopesticides against cowpea weevil. International Journal of Tropical Insect Science 42 (1): 261–268. DOI: 10.1007/S42690-021-00541-4
Djouaka R., Soglo M.F., Kusimo M.O., Adéoti R., Talom A., Zeukeng F., Paraïso A., Afari-Sefa V., Saethre M.G., Manyong V., Tamò M., Waage J., Lines J., Mahuku G. 2018. The rapid degradation of lambda-cyhalothrin makes treated vegetables relatively safe for consumption. International Journal of Environmental Research and Public Health 15 (7): 1536. DOI: 10.3390/ IJERPH15071536
Ebrahimi M., Safaralizade M.H., Valizadegan O. 2013. Contact toxicity of Azadirachta indica (Adr. Juss.), Eucalyptus camaldulensis (Dehn.) and Laurus nobilis (L.) essential oils on mortality cotton aphids, Aphis gossypii Glover (Hem.: Aphididae). Archives of Phytopathology and Plant Protection 46 (18): 2153–2162. DOI: 10.1080/03235408.2013.774526
Elumalai P., Gao X., Parthipan P., Luo J., Cui J. 2025. Agrochemical pollution: A serious threat to environmental health. Current Opinion in Environmental Science & Health 43: 100597. DOI: 10.1016/j.coesh.2025.100597
Fantke P., Juraske R. 2013. Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology 47 (8): 3548–3562. DOI: 10.1021/es303525x
Gilani R.A., Rafique M., Rehman A., Munis M.F.H., Rehman S., Chaudhary H.J. 2016. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. Journal of Basic Microbiology 56 (2): 105–119. DOI: 10.1002/JOBM.201500336
Guo X., Xie C., Wang L., Li Q., Wang Y. 2019. Biodegradation of persistent environmental pollutants by Arthrobacter sp. Environmental Science and Pollution Research 26 (9): 8429–8443. DOI: 10.1007/S11356-019-04358-0
Gupta I., Singh R., Muthusamy S., Sharma M., Grewal K., Singh H.P., Batish D.R. 2023. Plant essential oils as biopesticides: applications, mechanisms, innovations, and constraints. Plants 12 (16): 2916. DOI: 10.3390/PLANTS12162916
Horská T., Kocourek F., Stará J., Holý K., Mráz P., Krátký F., Kocourek V., Hajšlová J. 2020. Evaluation of pesticide residue dynamics in lettuce, onion, leek, carrot and parsley. Foods 9 (5): 680. DOI: 10.3390/FOODS9050680
Iwaniuk P., Borusiewicz A., Łozowicka B. 2022. Fluazinam and its mixtures induce diversified changes of crucial biochemical and antioxidant profile in leafy vegetable. Scientia Horticulturae 298: 110988. DOI: 10.1016/j.scienta.2022.110988
Iwaniuk P., Łozowicka B. 2022. Biochemical compounds and stress markers in lettuce upon exposure to pathogenic and fungicides inhibiting oxidative phosphorylation. Planta 255: 61. DOI: 10.1007/s00425-022-03838-x
Jing J., Zhou Y., Zhang Z., Wu L., Zhang H. 2023. Effect of tank-mixed adjuvant on the behavior of chlorantraniliprole and difenoconazole in soil. Heliyon 9 (1): e12658. DOI: 10.1016/j.heliyon.2022.e12658
Kabir M.H., El-Aty A.M.A., Im S.J., Rahman M.M., Kim S.-W., Farha W., Choi J.-H., Jung D.-I., Lee Y.-J., Lieu T., Shin H.-C., Im G.-J., Hong S.-M., Shim J.-H. 2016. Determination of residual levels of metrafenone in lettuce grown under greenhouse conditions using gas chromatography with a micro-electron capture detector. Applied Biological Chemistry 59: 43–49. DOI: 10.1007/s13765-015-0126-7
Kaczyński P., Iwaniuk P., Jankowska M., Orywal K., Socha K., Perkowski M., Farhan J.A., Łozowicka B. 2024. Pesticide residues in common and herbal teas combined with risk assessment and transfer to the infusion. Chemosphere 367: 143550. DOI: 10.1016/j.chemosphere.2024.143550
Kaczyński P., Łozowicka B., Wołejko E., Iwaniuk P., Konecki R., Drągowski W., Łozowicki J., Amanbek N., Rusiłowska J., Pietraszko A. 2020. Complex study of glyphosate and metabolites influence on enzymatic activity and microorganisms association in soil enriched with Pseudomonas fluorescens and sewage sludge. Journal of Hazardous Materials 393: 122443. DOI: 10.1016/j.jhazmat.2020.122443
Książek-Trela P., Potocki L., Szpyrka E. 2025. The impact of novel bacterial strains and their consortium on diflufenican degradation in the mineral medium and soil. Scientific Reports 15 (1): 1–13. DOI: 10.1038/S41598-025-02696-3
Kumari M., Swarupa P., Kesari K.K., Kumar A. 2022. Microbial inoculants as plant biostimulants: a review on risk status. Life 12 (1): 12. DOI: 10.3390/life13010012
Lu M.-X., Jiang W.W., Wang J.-L., Jian Q., Shen Y., Liu X.-J., Yu X.-Y. 2014. Persistence and dissipation of chlorpyrifos in brassica chinensis, lettuce, celery, asparagus lettuce, eggplant, and pepper in a greenhouse. PLoS ONE 9 (6): e100556. DOI: 10.1371/ journal.pone.0100556
Łozowicka B., Wołejko E., Kaczyński P., Konecki R., Iwaniuk P., Drągowski W., Łozowicki J., Tujtebajeva G., Wydro U., Jabłońska-Trypuć A. 2021. Effect of microorganism on behaviour of two commonly used herbicides in wheat/soil system. Applied Soil Ecology 162: 103879. DOI: 10.1016/j.apsoil.2020.103879
Markam S.S., Raj A., Kumar A., Khan M.L. 2024. Microbial biosurfactants: Green alternatives and sustainable solution for augmenting pesticide remediation and management of organic waste. Current Research in Microbial Sciences 7: 100266. DOI: 10.1016/J.CRMICR.2024.100266
Mesnage R., Antoniou M.N. 2018. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Frontiers in Public Health 5: 361. DOI: 10.3389/fpubh.2017.00361
Miao J.K., Shi R.H., Li C., Li X.W., Chen Q.X. 2016. Sweet flag (Acorus calamus) oils. Essential oils in food preservation. s. 775–782. W: Flavor and Safety (V. Preedy, red.). Academic Press, London, UK, 1120 ss. DOI: 10.1016/B978-0-12-416641-7.00088-2
Narayanan M., Kumarasamy S., Ranganathan M., Kandasamy S., Kandasamy G., Gnanavel K. 2020. Enzyme and metabolites attained in degradation of chemical pesticides ß Cypermethrin by Bacillus cereus. Materials Today: Proceedings 33 (Part 7): 3640–3645. DOI: 10.1016/J.MATPR.2020.05.722
Nishimi S., Abe Y., Kuwahara N., Nishimura A., Tsukuda S., Araki S., Tsunematsu K., Fukumori Y., Ogawa M., Suzuki K., Mitani S. 2024. Advantageous properties of a new fungicide, isofetamid. Journal of Pesticide Science 49 (2): 130–134. DOI: 10.1584/JPESTICS.D23-067
Parven A., Md Meftaul I., Venkateswarlu K., Megharaj M. 2025. Herbicides in modern sustainable agriculture: environmental fate, ecological implications, and human health concerns. International Journal of Environmental Science and Technology 22: 1181–1202. DOI: 10.1007/s13762-024-05818-y
Qi X., Zhong S., Schwarz P., Chen B., Rao J. 2023. Mechanisms of antifungal and mycotoxin inhibitory properties of Thymus vulgaris L. essential oil and their major chemical constituents in emulsion-based delivery system. Industrial Crops and Products 197: 116575. DOI: 10.1016/J.INDCROP.2023.116575
SANTE 11312/2021 v2 – Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Version 2 implemented by 1 January 2024.
Sarker A., Kim D., Jeong W.-T. 2024. Environmental fate and sustainable management of pesticides in soils: a critical review focusing on sustainable agriculture. Sustainability 16 (23): 10741. DOI: 10.3390/su162310741
Schusterova D., Han J., Gomersall V., Jursik M., Horska T., Kosek V., Kocourek F., Kocourek V., Hajslova J. 2025. Optimized methods for the investigation of changes in levels of pesticide residues and their transformation products in iceberg lettuce. Food Research International 202: 115625. DOI: 10.1016/j.foodres.2024.115625
Swarcewicz M.K., Gregorczyk A. 2013. Atrazine degradation in soil: effects of adjuvants and a comparison of three mathematical models. Pest Management Science 69 (12): 1346–1350. DOI: 10.1002/ps.3510
Wijerathna S.S., Perera A.G.W.U., Chinthaka S.D.M. 2023. Chemical composition and biological efficacy of Acorus calamus (L.) rhizome essential oil on Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Oryzaephilus surinamensis (L.) as stored-grain protectants. Biocatalysis and Agricultural Biotechnology 54: 102931. DOI: 10.1016/J.BCAB.2023.102931
Wróblewski M., Piotrowska-Niczyporuk A., Ciereszko I., Gocek N., Żabka A., Szczeblewski P., Sobiech Ł., Saja-Garbarz D., Polit J.T. 2025. Phytotoxicity and bioherbicidal potential of sweet flag (Acorus calamus L.) essential oil on Fabaceae and Brassicaceae species. Scientia Horticulturae 347: 114180. DOI: 10.1016/J.SCIENTA.2025.114180
Wydro U., Jabłońska-Trypuć A., Medo J., Borowski G., Kaczyński P., Łozowicka B., Wołejko E. 2024. Effect of Pseudomonas fluorescens on isofetamid dissipation and soil microbial activity. Applied Sciences 14 (23): 10901. DOI: 10.3390/app142310901
Yang X., Gil M.I., Yang Q., Tomás-Barberán F.A. 2022. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety 21 (1): 4–45. DOI: 10.1111/1541-4337.12877
Yin Y., Miao J., Shao W., Liu X., Zhao Y., Ma Z. 2023. Fungicide resistance: progress in understanding mechanism, monitoring, and management. Phytopathology 113 (4): 707–718. DOI: 10.1094/PHYTO-10-22-0370-KD
Zhou L., Liu Y., Kong F., Jia S., Wang Q., Wang Z., Zhang H., Huang X. 2024. Sensitivity of Botrytis cinerea from vineyards to boscalid, isofetamid, and pydiflumetofen in Shandong Province, China. Phytopathology 114 (5): 1068–1074. DOI: 10.1094/ PHYTO-10-23-0369-KC |
| Progress in Plant Protection (2025) : 0-0 |
| First published on-line: 2025-11-20 13:50:52 |
| http://dx.doi.org/10.14199/ppp-2025-027 |
| Full text (.PDF) BibTeX Mendeley Back to list |


