Progress in Plant Protection

Development of models for simulation the influence of temperature on teliospores germination of Tilletia caries (DC.) Tul. & C. Tul. and Tilletia laevis J.G. Kühn
Opracowanie modeli do symulacji wpływu temperatury na kiełkowanie teliospor Tilletia caries (DC.) Tul. & C. Tul. oraz Tilletia laevis J.G. Kühn

Andrzej Wójtowicz, e-mail: a.wojtowicz@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Krzysztof Kubiak, e-mail: K.Kubiak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Romuald Gwiazdowski, e-mail: R.Gwiazdowski@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Maria Pasternak, e-mail: M.Pasternak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

The development of models describing the influence of temperature on Tilletia laevis and Tilletia caries teliospores germination was the aim of the study conducted under laboratory condition. Teliospores were collected from infected ears of winter wheat Nadobna cultivar grown on the plots at the Experimental Stationon Institute of Plant Protection – National Research Institute in Winna Góra 60 kilometers south of Poznań. The water suspension of teliospores was plated on Petri dishes coated with a thin layer of water agar. Teliospores were incubated at the following temperature: 5, 10, 15, 20 and 25°C. Teliospores germination varied depending on a temperature. The most germinated teliospores were observed at 15°C for T. caries and at 15 and 10°C for T. laevis. The germinated teliospores were not recorded at 25°C. The relationship between the temperature and the germination of teliospores were expressed by a polynomials of the third degree. The models were used in the computer application designed to visualize the effect of temperature on the germination of spores of T. laevis and T. caries.


Celem przeprowadzonych badań było opracowanie modeli matematycznych opisujących wpływ temperatury otoczenia na kiełkowanie teliospor Tilletia laevis sprawcy śnieci gładkiej pszenicy oraz Tilletia caries sprawcy śnieci cuchnącej pszenicy. Teliospory pozyskiwano z porażonych kłosów pszenicy ozimej odmiany Nadobna, z poletek zlokalizowanych na terenie Polowej Stacji Doświadczalnej Instytutu Ochrony Roślin – Państwowego Instytutu Badawczego w Winnej Górze. Wodną zawiesinę zarodników nanoszono w równej objętości na płytki Petriego pokryte cienką warstwą agaru wodnego. Teliospory inkubowano w temperaturach: 5, 10, 15, 20 i 25°C. Kiełkowanie teliospor było zróżnicowane w zależności od temperatury. Najwięcej skiełkowanych teliospor T. caries zaobserwowano w temperaturze 15°C, a T. laevis w temperaturach 15 i 10°C. W temperaturze 25°C nie odnotowano kiełkujących zarodników. Zależność między temperaturą a kiełkowaniem teliospor przedstawiono za pomocą wielomianów trzeciego stopnia, które wykorzystano przy opracowaniu aplikacji komputerowej przeznaczonej do wizualizacji wpływu temperatury na kiełkowanie zarodników T. laevis i T. caries


Key words
mathematical model; Tilletia laevis; Tilletia caries; model matematyczny
References

Bamdadian A. 1993. A short report on the wheat bunt in Iran. Plant Protection Research Institute. Evin, Iran, p. 2.

Gottlieb D. 1950. The physiology of spore germination in fungi. The Botanical Review 16: 229–257. DOI: 10.1007/BF02873609

Haines R.B. 1931. The influence of temperature on the rate of growth of Sporotrchium canis, from –10°C to +30°C. Journal of Experimental Biology 8: 379–388.

Hoffmann J.A., Waldher J.T. 1981. Chemical seed treatments for controlling seedborne and soilborne common bunt of wheat. Plant Di-sease 65: 256–259.

Hyde P.M. 1982. Temperature-sensitive resistance of the wheat cultivar Maris Fundin to Puccinia recondita. Plant Pathology 31 (1): 25–30.

Kryczyński S., Weber Z. 2011. Fitopatologia. Tom 2. Choroby roślin uprawnych. PWRiL, Poznań, 464 ss.

Lowther C.V. 1950. Chlamydospore germination in physiologic races of Tilletia caries and Tilletia foetida. Phytopathology 40: 590–603.

Marín S., Sanchis V., Sáenz R., Ramos A.J., Vinas I., Magan N. 1998. Ecological determinants for germination and growth of some Aspergillus and Penicillium spp. from maize grain. Journal of Applied Microbiology 84 (1): 25–36.

Nanguy S.P.M., Perrier-Cornet J.-M., Bensoussan M., Dantigny P. 2010. Impact of water activity of diverse media on spore germination of Aspergillus and Penicillium species. International Journal of Food Microbiology 142 (1): 273–276. DOI: 10.1016/j.ijfoodmicro. 2010.06.031

Nazari L., Pattori E., Terzi V., Morcia C., Rossi V. 2014. Influence of temperature on infection, growth, and mycotoxin production by Fusarium langsethiae and F. sporotrichioides in durum wheat. Food Microbiology 39: 19–26. DOI: 10.1016/j.fm.2013.10.009

Pardo E., Malet M., Marín S., Sanchis V., Ramos A.J. 2006. Effects of water activity and temperature on germination and growth profiles of ochratoxigenic Penicillium verrucosum isolates on barley meal extract agar. International Journal of Food Microbiology 106 (1): 25–31. DOI: 10.1016/j.ijfoodmicro.2005.07.002

Pearson R.C., Aldwmcke H.S., Seem R.C. 1977. Teliospore germination and basidiospore formation in Gymnosporangium juniperi-virginianae: a regression model of temperature and time effects. Canadian Journal of Botany 55: 2832–2837.

Purdy L.H., Kendrick E.L. 1957. Influence of environmental factors on the development of wheat bunt in the Pacific Northwest. I. Effect of soil moisture and soil temperature on spore germination. Phytopathology 47: 591–594.

Purdy L.H., Kendrick E.L. 1963. Influence of environmental factors on the development of wheat bunt in the Pacific Northwest. VI. Effect of soil temperature and moisture on infection by soil spores. Phytopathology 53: 416–418.

Schubert M., Mourad S., Schwarze F.W.M.R. 2010. Statistical approach to determine the effect of combined environmental parameters on conidial development of Trichoderma atroviride (T-15603.1). Journal of Basic Microbiology 50 (6): 570–580. DOI: 10.1002/jobm.201000036

Waggoner P.E., Parlange J.Y. 1974. Mathematical model for spore germination at changing temperature. Phytopathology 64: 605–610.

Waggoner P.E., Parlange J.Y. 1975. Slowing of spore germination with changes between moderately warm and cool temperatures. Phytopathology 65 (5): 551–553.

Weimer J.L., Hater L.L. 1923. Temperature relations of eleven species of Rhizopus. Journal of Agricultural Research 24: 1–40.

Progress in Plant Protection (2016) 56: 125-128
First published on-line: 2016-03-23 14:31:49
http://dx.doi.org/10.14199/ppp-2016-022
Full text (.PDF) BibTeX Mendeley Back to list