Progress in Plant Protection

Use of digital droplet PCR analysis in early diagnostics of winter wheat infection caused by Tilletia spp.
Wykorzystanie analizy digital droplet PCR we wczesnej diagnostyce porażenia pszenicy ozimej przez Tilletia spp.

Katarzyna Pieczul, e-mail: k.pieczul@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Krzysztof Kubiak, e-mail: k.kubiak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Marta Budziszewska, e-mail: m.budziszewska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Ilona Świerczyńska, e-mail: i.swierczynska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

The study aimed at using the digital droplet PCR (ddPCR) analysis to identify wheat infection by Tilletia caries (DC.) Tul. and Tilletia laevis Kühn in the early stages of plant development. The tests were carried out on winter wheat, artificially inoculated with T. caries and T. laevis teliospores. For the ddPCR tests wheat in development phases BBCH 10–32 and 75 development phases was collected. The ddPCR analysis showed the possibility of identifying pathogen’s DNA since the development phase of BBCH 10. In control plants – not infected with Tilletia spp. the presence of fungal DNA was not detected. According to the obtained results, it was also possible to trace the dynamics of pathogen DNA propagation in wheat tissues during a plant development.


Celem pracy było zastosowanie analizy digital droplet PCR (ddPCR) w celu detekcji porażenia pszenicy przez Tilletia caries (DC.) Tul. oraz Tilletia laevis Kühn, we wczesnych stadiach rozwojowych roślin. Badania prowadzono na pszenicy ozimej, sztucznie inokulowanej teliosporami T. caries oraz T. laevis. Materiał do badań ddPCR pobierano w fazach rozwojowych BBCH 10–32 i 75. Przeprowadzona analiza ddPCR wskazała możliwość detekcji DNA patogenu już od fazy BBCH 10. W roślinach kontrolnych – niezakażanych Tilletia spp. nie wykazano obecności DNA grzyba. Na podstawie uzyskanych wyników możliwe było także prześledzenie dynamiki namnażania DNA patogenu w tkankach pszenicy w trakcie cyklu rozwojowego roślin.

Key words
digital droplet PCR; Tilletia spp.; common bunt; śnieć cuchnąca pszenicy; śnieć gładka pszenicy
References

Blaya J., Lloret E., Santísima‐Trinidad A.B., Ros M., Pascual J.A. 2016. Molecular methods (digital PCR and real‐time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples. Pest Management Science 72 (4): 747–753. DOI: 10.1002/ps.4048

 

Del Pilar Martínez-Diz M., Andrés-Sodupe M., Berbegal M., Bujanda R., Díaz-Losada E., Gramaje D. 2020. Droplet digital PCR technology for detection of Ilyonectria liriodendri from grapevine environmental samples. Plant Disease104 (4): 1144–1150. DOI: 10.1094/PDIS-03-19-0529-RE

 

Dreo T., Pirc M., Ramšak Ž., Pavšič J., Milavec M., Žel J., Gruden K. 2014. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Analytical and Bioanalytical Chemistry 406: 6513–6528. DOI: 10.1007/s00216-014-8084-1

 

Dumalasová V., Bartoš P. 2006. Wheat reaction to common bunt in the field and in the greenhouse. Czech Journal of Genetics and Plant Breeding 42 (Special Issue): 37–41.

 

Dupas E., Legendre B., Olivier V., Poliakoff F., Manceau C., Cunty A. 2019. Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants. Journal of Microbiological Methods 162: 86–95. DOI: 10.1016/j.mimet.2019.05.010

 

EPPO 2004. EPPO Standards PP 1/19(4). Seed-borne cereal fungi. Bulletin OEPP/EPPO Bulletin 34 (1): 5–8. DOI: 10.1111/j.1365-2338.2004.00691.x

 

Gao Y., Tan M.K., Zhu Y.G. 2016. Rapid and specific detection of Tilletia indica using loop-mediated isothermal DNA amplification. Australasian Plant Pathology 45: 361–367. DOI: 10.1007/s13313-016-0422-7

 

Goates B.J. 1996. Common bunt and dwarf bunt. s. 12–25. W: Bunt and Smut Diseases of Wheat: Concepts and Methods of Disease Management (R.D. Wilcoxson, E.E. Saari, red.). CIMMYT, Mexico City, Mexico, 66 ss.

 

Gutiérrez-Aguirre I., Rački N., Dreo T., Ravnikar M. 2015. Droplet digital PCR for absolute quantification of pathogens. s. 331–347. W: Plant Pathology. Methods in Molecular Biology Vol. 1302 (C. Lacomme, red.). Humana Press, New York, NY, 352 ss. ISBN 978-1-4939-2619-0. DOI 10.1007/978-1-4939-2620-6

 

Hindson B.J., Ness K.D., Masquelier D.A., Belgrader P., Heredia N.J., Makarewicz A.J., Bright I.J., Lucero M.Y., Hiddessen A.L., Legler T.C., Kitano T.K., Hodel M.R., Petersen J.F., Wyatt P.W., Steenblock E.R., Shah P.H., Bousse L.J., Troup C.B., Mellen J.C., Wittmann D.K., Erndt N.G., Cauley T.H., Koehler R.T., So A.P., Dube S., Rose K.A., Montesclaros L., Wang S., Stumbo D.P., Hodges S.P., Romine S., Milanovich F.P., White H.E., Regan J.F., Karlin-Neumann G.A., Hindson C.M., Saxonov S., Colston B.W. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry 83 (22): 8604–8610. DOI: 10.1021/ac202028g

 

Hoffmann J.A. 1982. Bunt of wheat. Plant Disease 66 (11): 979–986. DOI: 10.1094/PD-66-979

 

Josefsen L., Christiansen S.K. 2002. PCR as a tool for early detection and diagnosis of common bunt in wheat, caused by Tilletia tritici. Mycological Research 106 (11): 1287–1292. DOI: 10.1017/S0953756202006603

 

Kendrick E.L., Purdy L.H. 1959. A seedling reaction of wheat indicative of bunt infection. Phytopathology 49: 130–132.

 

Koch H., Jeschke A., Becks L. 2016. Use of ddPCR in experimental evolution studies. Methods in Ecology and Evolution 7 (3): 340–351. DOI: 10.1111/2041-210X.12467

 

Kochanová M., Zouhar M., Prokinová E., Ryšánek P. 2004. Detection of Tilletia controversa and Tilletia caries in wheat by PCR method. Plant, Soil and Environment 50 (2): 75–77. DOI: 10.17221/3684-PSE

 

Liu J., Li C., Muhae-Ud-Din G., Liu T., Chen W., Zhang J., Gao L. 2020. Development of the droplet digital PCR to detect the teliospores of Tilletia controversa Kühn in the soil with greatly enhanced sensitivity. Frontiers in Microbiology 11 (Article 4): 1–9. DOI: 10.3389/fmicb.2020.00004

 

Lu Y., Zhang H., Zhao Z., Wen C., Wu P., Song S., Yu S., Luo L., Xu X. 2020. Application of droplet digital PCR in detection of seed-transmitted pathogen Acidovorax citrulli. Journal of Integrative Agriculture 19 (2): 561–569. DOI: 10.1016/S2095-3119(19)62673-0

 

Maksimov I.V., Troshina N.B., Khairullin R.M., Surina O.B., Ganiev R.M. 2002. The effect of the common bunt on the growth of wheat seedlings and calluses. Russian Journal of Plant Physiology 49 (5): 685–689. DOI: 10.1023/A:1020253305191

 

Matanguihan J.B., Murphy K.M., Jones S.S. 2011. Control of common bunt in organic wheat. Plant Disease 95 (2): 92–103. DOI: 10.1094/PDIS-09-10-0620

 

McNeil M., Roberts A.M.I., Cockerell V., Mulholland V. 2004. Real‐time PCR assay for quantification of Tilletia caries contamination of UK wheat seed. Plant Pathology 53 (6): 741–750. DOI: 10.1111/j.1365-3059.2004.01094.x

 

Mehle N., Dobnik D., Ravnikar M., Pompe Novak M. 2018. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of Potato virus Y strains. Analytical and Bioanalytical Chemistry 410 (16): 3815–3825. DOI: 10.1007/s00216-018-1053-3

 

Mehle N., Gregur L., Bogožalec Košir A., Dobnik D. 2020. One-step reverse-transcription digital PCR for reliable quantification of different Pepino mosaic virus genotypes. Plants 9 (3): 326. DOI: 10.3390/plants9030326

 

Nian S.J., Yuan Q., Yin Y.P., Cai J., Wang Z.K. 2009. Detection of Tilletia controversa Kühn by real time quantitative PCR. Scientia Agricultura Sinica 42 (12): 4403–4410. DOI: 10.3864/j.issn.0578-1752.2009.12.036

 

Pandey B., Mallik I., Gudmestad N.C. 2020. Development and application of a real-time reverse-transcription PCR and droplet digital PCR assays for the direct detection of Potato mop top virus in soil. Phytopathology 110 (1): 58–67. DOI: 10.1094/PHYTO-05-19-0185-FI

 

Pieczul K., Perek A., Kubiak K. 2018. Detection of Tilletia caries, Tilletia laevis and Tilletia controversa wheat grain contamination using loop-mediated isothermal DNA amplification (LAMP). Journal of Microbiological Methods 154: 141–146. DOI: 10.1016/j.mimet.2018.10.018

 

Rački N., Dreo T., Gutierrez-Aguirre I., Blejec A., Ravnikar M. 2014. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 10: 42. DOI: 10.1186/s13007-014-0042-6

 

Ristaino J.B., Saville A.C., Paul R., Cooper D.C., Wei Q. 2020. Detection of Phytophthora infestans by loop-mediated isothermal amplification, real-time LAMP, and droplet digital PCR. Plant Disease 104 (3): 708–716. DOI: 10.1094/PDIS-06-19-1186-RE

 

Yao Z., Qin D., Chen D., Liu C., Chen W., Liu T., Liu B., Gao L. 2019. Development of ISSR-derived SCAR marker and SYBR Green I real-time PCR method for detection of teliospores of Tilletia laevis Kühn. Scientific Reports 9: 17651. DOI: 10.1038/s41598-019-54163-5

 

Zhao Y., Xia Q., Yin Y., Wang Z. 2016. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection of Xanthomonas citri subsp. citri. PLoS One 11 (7): e0159004. DOI: 10.1371/journal.pone.0159004

 

Zouhar M., Mazáková J., Prokinová E., Váňová M., Rysanek P. 2010. Quantification of Tilletia caries and Tilletia controversa mycelium in wheat apical meristem by real-time PCR. Plant Protection Science 46 (3): 107–115. DOI: 10.17221/50/2009-PPS

Progress in Plant Protection (2020) 60: 173-178
First published on-line: 2020-07-02 14:30:15
http://dx.doi.org/10.14199/ppp-2020-019
Full text (.PDF) BibTeX Mendeley Back to list