Progress in Plant Protection

Jednoczesne wykrywanie wirusa mozaiki arbuza (watermelon mosaic virus, WMV) oraz wirusa żółtej mozaiki cukinii (zucchini yellow mosaic virus, ZYMV) za pomocą reakcji dupleks RT-PCR

Simultaneous detection of watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) using duplex RT-PCR reaction

Julia Minicka, e-mail: j.minicka@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Agnieszka Taberska, e-mail: a.taberska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Beata Hasiów-Jaroszewska, e-mail: B.Hasiow@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

Wirus mozaiki arbuza (watermelon mosaic virus, WMV) oraz wirus żółtej mozaiki cukinii (zucchini yellow mosaic virus, ZYMV) są groźnymi patogenami infekującymi uprawy roślin dyniowatych na całym świecie. W Polsce występują powszechnie, szczególnie w uprawach cukinii, powodując straty w jakości i ilości plonów. Celem pracy było opracowanie i zoptymalizowanie reakcji dupleks RT-PCR do jednoczesnego wykrywania obu wirusów często stwierdzanych w infekcji mieszanej. Zaprojektowane startery amplifikowały gen kodujący białko płaszcza (CP) obu wirusów odpowiednio wielkości: 977 pz WMV oraz 415 pz ZYMV. Czułość wykrywania reakcji dupleks RT-PCR wyniosła 500 pg/μl całkowitego RNA. Specyficzność wykrywania poszczególnych produktów była sprawdzana za pomocą sekwencjonowania metodą Sangera. Opracowana technika może być wykorzystywana do rutynowego wykrywania obu wirusów w zainfekowanych próbkach.

 

Watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) are dangerous pathogens infecting cucurbit crops worldwide. In Poland, both viruses are common, especially in the cultivation of zucchini, causing losses in the quality and quantity of crops. The aim of the study was to develop and optimize the duplex RT-PCR reaction for simultaneous detection of both viruses often occurring in mixed infection. The designed primers amplified the gene encoding the coat protein (CP) of both viruses with a size of 977 bp for WMV and 415 bp for ZYMV. The duplex RT-PCR detection limit was 500 pg/μl of total RNA. The specificity of detection of individual products was checked by Sanger sequencing. The developed assay can be used for routine detection of both viruses in infected samples.

Key words
dupleks RT-PCR; wykrywanie; wirus mozaiki arbuza; wirus żółtej mozaiki cukinii; koinfekcja; duplex RT-PCR; detection; watermelon mosaic virus; zucchini yellow mosaic virus; co-infection
References

Alonso-Prados J.L., Fraile A., García-Arenal F. 1997. Impact of cucumber mosaic virus and watermelon mosaic virus 2 infection on melon production in central Spain. Journal of Plant Pathology 79 (2): 131–134.

 

Balint R., Plooy I., Steele C. 1990. The nucleotide sequence of zucchini yellow mosaic potyvirus. Abstract of the VIIIth International Congress of Virology 8: 84–107.

 

Bertin S., Manglli A., McLeish M., Tomassoli L. 2020. Genetic variability of watermelon mosaic virus isolates infecting cucurbit crops in Italy. Archives of Virology 165 (4): 937–946. DOI: 10.1007/s00705-020-04584-9

 

Borodynko N., Hasiów-Jaroszewska B., Pospieszny H. 2010. Występowanie i identyfikacja wirusów: żóltej mozaiki cukinii (Zucchini yellow mosaic virus) i mozaiki arbuza (Watermelon mosaic virus) na cukinii w Polsce. [The occurrence and identification of Zucchini yellow mosaic virus and Watermelon mosaic virus on zucchini plants in Poland]. Zeszyty Problemowe Postępów Nauk Rolniczych 554: 21–26.

 

Borodynko N., Hasiów‐Jaroszewska B., Rymelska N., Pospieszny H. 2009. Watermelon mosaic virus reported for the first time in Poland. Plant Pathology 58 (4): 783. DOI: 10.1111/j.1365-3059.2009.02108.x

 

Chung B.Y.-W., Miller W.A., Atkins J.F., Firth A.F. 2008. An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America 105 (15): 5897–5902. DOI: 10.1073/pnas.0800468105

 

Cohen S., Nitzany F.E. 1963. Identity of viruses affecting cucurbits in Israel. Phytopathology 53 (2): 193–196.

 

DaPalma T., Doonan B.P., Trager N.M., Kasman L.M. 2010. A systematic approach to virus–virus interactions. Virus Research 149 (1): 1–9. DOI: 10.1016/j.virusres.2010.01.002

 

Desbiez C., Costa C., Wipf-Scheibel C., Girard M., Lecoq H. 2007. Serological and molecular variability of watermelon mosaic virus (genus Potyvirus). Archives of Virology 152: 775–781. DOI: 10.1007/s00705-006-0899-4

 

Desbiez C., Joannon B., Wipf-Scheibel C., Chandeysson C., Lecoq H. 2009. Emergence of new strains of Watermelon mosaic virus in South-eastern France: Evidence for limited spread but rapid local population shift. Virus Research 141 (2): 201–208. DOI: 10.1016/j.virusres.2008.08.018

 

Desbiez C., Lecoq H. 2003. Zucchini yellow mosaic virus. Plant Pathology 46 (6): 809–829. DOI: 10.1046/j.1365-3059.1997.d01-87.x

 

de Souza Aguiar R.W., Martins A.R., Nascimento V.L., Capone A., Costa L.T.M., Campos F.S., Fidelis R.R., dos Santos G.R., de Oliveira Resende R., Nagata T. 2019. Multiplex RT-PCR identification of five viruses associated with the watermelon crops in the Brazilian Cerrado. African Journal of Microbiology Research 13 (3): 60–69. DOI: 10.5897/AJMR2018.8976

 

Gal-On A. 2007. Zucchini yellow mosaic virus: insect transmission and pathogenicity – the tails of two proteins. Molecular Plant Pathology 8 (2): 139–150. DOI: 10.1111/j.1364-3703.2007.00381.x

 

Hammond J., Lecoq H., Raccah B. 1999. Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Advances in Virus Research 54: 189–314. DOI: 10.1016/S0065-3527(08)60368-1

 

Harth J.E., Ferrari M.J., Helms A.M., Tooker J.F., Stephenson A.G. 2018. Zucchini yellow mosaic virus infection limits establishment and severity of powdery mildew in wild populations of Cucurbita pepo. Frontiers in Plant Sciences 9: 792. DOI: 10.3389/fpls.2018.01815

 

Ito T., Ieki H., Ozaki K. 2002. Simultaneous detection of six citrus viroids and Apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. Journal of Virological Methods 106 (2): 235–239. DOI: 10.1016/S0166-0934(02)00147-7

 

Kassem M., Juarez M., Gómez P., Mengual C.M., Sempere R.N., Plaza M., Elena S.F., Moreno A., Fereres A., Aranda M.A. 2013. Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain. Phytopathology 103 (11): 1188–1197. DOI: 10.1094/PHYTO-11-12-0280-R

 

Kwon J.Y., Hong J.S., Kim M.J., Choi S.H., Min B.E., Song E.G., Kim H.H., Ryu K.H. 2014. Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses. Journal of Virological Methods 206: 133–139. DOI: 10.1016/j.jviromet.2014.06.009

 

Lecoq H., Desbiez C. 2008. Watermelon mosaic virus and zucchini yellow mosaic virus. s. 433–440. W: Encyclopedia of Virology, Third Edition (B.W.J. Mahy, M.H.V. Van Regenmortel, red.). Academic Press. ISBN 978-0-12-374410-4. DOI: 10.1016/B978-012374410-4.00740-8

 

Lecoq H., Katis N. 2014. Control of cucurbit viruses. Advances in Virus Research 90: 255–296. DOI: 10.1016/B978-0-12-801246-8.00005-6

 

Lisa V., Boccardo G., D’Agostino G., Dellavalle G., D’Aquilio M. 1981. Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71 (7): 667–672.

 

Menzel W., Jelkmann W., Maiss E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. Journal of Virological Methods 99 (1–2): 81–92. DOI: 10.1016/S0166-0934(01)00381-0

 

Minicka J., Zarzyńska-Nowak A., Budzyńska D., Borodynko-Filas N., Hasiów-Jaroszewska B. 2020. High-throughput sequencing facilitates discovery of new plant viruses in Poland. Plants 9 (7): 820. DOI: 10.3390/plants9070820

 

Rajbanshi N., Ali A. 2016. First complete genome sequence of a watermelon mosaic virus isolated from watermelon in the United States. Genome Announcements 4 (2): e00299-16. DOI: 10.1128/genomeA.00299-16

 

Rajbanshi N., Ali A. 2019. Simultaneous detection of three common potyviruses infecting cucurbits by multiplex reverse transcription polymerase chain reaction assay. Journal of Virological Methods 273: 113725. DOI: 10.1016/j.jviromet.2019.113725

 

Revers F., García J.A. 2015. Molecular biology of potyviruses. Advances in Virus Research 92: 101–199. DOI: 10.1016/bs.aivir.2014.11.006

 

Revers F., Le Gall O., Candresse T., Maule A.J. 1999. New advances in understanding the molecular biology of plant/potyvirus interactions. Molecular Plant-Microbe Interaction 12 (5): 367–376. DOI: 10.1094/MPMI.1999.12.5.367

 

Riechmann J.L., Laín S., García J.A. 1992. Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73 (1): 1–16. DOI: 10.1099/0022-1317-73-1-1

 

Sharifi M., Massumi H., Heydarnejad J., Pour A.H., Shaabanian M., Rahimian H. 2008. Analysis of the biological and molecular variability of Watermelon mosaic virus isolates from Iran. Virus Genes 37 (3): 304–313. DOI: 10.1007/s11262-008-0271-8

 

Shukla D.D., Ward C.W., Brunt A.A. 1994. The Potyviridae. CAB International, Wallingford, UK, 516 ss.

 

Waner J.L. 1994. Mixed viral infections: detection and management. Clinical Microbiology Review 7 (2): 143–151. DOI: 10.1128/CMR.7.2.143

 

Wintermantel W.M., Cortez A.A., Anchieta A.G., Gulati-Sakhuja A., Hladky L.L. 2008. Co-infection by two criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. Phytopathology 98 (12): 1340–1345. DOI: 10.1094/PHYTO-98-12-1340

 

Zarzyńska-Nowak A., Hasiów-Jaroszewska B., Budzyńska D., Borodynko-Filas N. 2019. First report of cucurbit aphid-borne yellows virus infecting zucchini plants (Cucurbita pepo convar. giromontiina) in Poland. Plant Disease 103 (5): 1047. DOI: 10.1094/PDIS-10-18-1831-PDN

Progress in Plant Protection (2021) 61: 68-73
First published on-line: 2021-03-22 10:34:51
http://dx.doi.org/10.14199/ppp-2021-008
Full text (.PDF) BibTeX Mendeley Back to list