Progress in Plant Protection

Bakterie kompostowe jako potencjalne czynniki biologicznej ochrony roślin
Compost bacteria as potential agents in biological plant control

Katarzyna Marchwińska, e-mail: katarzyna.marchwinska@ue.poznan.pl

Uniwersytet Ekonomiczny w Poznaniu, Instytut Nauk o Jakości, Katedra Przyrodniczych Podstaw Jakości, al. Niepodległości 10, 61-875 Poznań, Polska

Daniela Gwiazdowska, e-mail: daniela.gwiazdowska@ue.poznan.pl

Uniwersytet Ekonomiczny w Poznaniu, Instytut Nauk o Jakości, Katedra Przyrodniczych Podstaw Jakości, al. Niepodległości 10, 61-875 Poznań, Polska

Krzysztof Juś, e-mail: krzysztof.jus@ue.poznan.pl

Uniwersytet Ekonomiczny w Poznaniu, Instytut Nauk o Jakości, Katedra Przyrodniczych Podstaw Jakości, al. Niepodległości 10, 61-875 Poznań, Polska

Romuald Gwiazdowski, e-mail: r.gwiazdowski@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Centrum Badań Rejestracyjnych Agrochemikaliów, Władysława Węgorka 20, 60-318 Poznań, Polska
Abstract

Założenia integrowanej ochrony roślin kładą duży nacisk na rozwój metod niechemicznych, co zwiększa zainteresowanie metodami biologicznymi i poszukiwaniem mikroorganizmów, które stanowiłyby alternatywę dla stosowanych najczęściej fungicydów. Celem doświadczeń była izolacja bakterii kompostowych, określenie ich aktywności fungistatycznej względem wybranych patogenicznych grzybów z rodzajów Fusarium, Alternaria, Sclerotinia, Botrytis, Rhizoctonia oraz Pythium w warunkach in vitro oraz identyfikacja wybranych izolatów. Z kompostu przydomowego wyizolowano 44 szczepy bakterii, których aktywność fungistatyczną oceniano metodą dyfuzji studzienkowej. Uzyskane wyniki pozwoliły na selekcję 12 izolatów bakterii kompostowych, charakteryzujących się najszerszym spektrum aktywności i najsilniejszym oddziaływaniem wobec badanych grzybów. Identyfikacja izolatów bakterii metodami: spektrometrii masowej MALDI-TOF oraz sekwencjonowania genu 16S rRNA wykazała ich przynależność do gatunków Bacillus subtilis, Alcaligenes faecalis, Stenotrophomonas maltophilia i Serratia liquefaciens.

 

The assumptions of integrated pest management put great emphasis on the development of non-chemical methods which increases the interest in biological methods and the search for microorganisms that would be an alternative to the most frequently used fungicides. The aim of the experiments was the isolation of the compost bacteria, in vitro determination of their fungistatic activity against some pathogenic fungi of the genus Fusarium, Alternaria, Sclerotinia, Botrytis, Rhizoctonia and Pythium and identification of selected isolates. From the backyard compost, 44 bacterial strains were isolated and assessed for the fungistatic properties by the well diffusion method. The obtained results allowed for the selection of 12 isolates of compost bacteria, characterised by the broadest and the strongest fungistatic activity spectrum against tested fungi. Identification of bacterial isolates by: MALDI-TOF mass spectrometry and 16S rRNA gene sequencing methods showed their belonging to the species Bacillus subtilis, Alcaligenes faecalis, Stenotrophomonas maltophilia and Serratia liquefaciens.

Key words
biologiczna ochrona roślin; patogeniczne grzyby; bakterie kompostowe; biological plant protection; pathogenic fungi; compost bacteria
References

Bacon C.W., Palencia E.R., Hinton D.M. 2015. Abiotic and biotic plant stress-tolerant and beneficial secondary metabolites produced by endophytic Bacillus species. s. 163–177. W: Plant microbes symbiosis: applied facets (N. Arora, red.) Springer, New Delhi. DOI: 10.1007/978-81-322-2068-8_8

 

Conrath U., Beckers G.J.M., Langenbach C.J.G., Jaskiewicz M.R. 2015. Priming for enhanced defense. Annual Review of Phytopathology 53: 97–119. DOI: 10.1146/annurev-phyto-080614-120132

 

Dec M., Urban-Chmiel R., Gnat S., Puchalski A., Wernicki A. 2014. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis. Research in Microbiology 165 (3): 190–201. DOI: 10.1016/j.resmic.2014.02.003

 

Desjardins A.E. 2006. Fusarium Mycotoxins: Chemistry, Genetics and Biology. American Phytopathological Society (APS Press), St. Paul, MN, USA, 268 ss. ISBN 0-89-54-335-6.

 

Dunne C., Crowley J.J., Moënne-Loccoz Y., Dowling D.N., O’Gara F. 1997. Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143 (12): 3921–3931. DOI: 10.1099/00221287-143-12-3921

 

Dweba C.C., Figlan S., Shimelis H.A., Motaung T.E., Sydenham S., Mwadzingeni L., Tsilo T.J. 2017. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection 91: 114–122. DOI: 10.1016/j.cropro.2016.10.002

 

Fira D., Dimkić I., Berić T., Lozo J., Stanković S. 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology 285: 44–55. DOI: 10.1016/j.jbiotec.2018.07.044

 

Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. 2018. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control 117: 147–157. DOI: 10.1016/j.biocontrol.2017.11.006

 

Gong A.D., Wu N.N., Kong X.W., Zhang Y.M., Hu M.J., Gong S.J., Dong F.Y., Wang J.H., Zhao Z.Y., Liao Y.C. 2019. Inhibitory effect of volatiles emitted from Alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Frontiers in Microbiology 10: 1419. DOI: 10.3389/fmicb.2019.01419

 

Gwiazdowski R., Kluczyńska K., Gwiazdowska D. 2015. Wpływ wybranych bakterii fermentacji mlekowej na wzrost patogenów występujących w uprawie rzepaku. [Impact of the selected lactic acid bacteria on the growth of pathogens occurring in oilseed rape crops]. Progress in Plant Protection 55 (4): 446–452. DOI: 10.14199/ppp-2015-073

 

Heimpel G.E., Mills N. 2017. Biological Control – Ecology and Applications. Cambridge University Press, Cambridge, 379 ss. ISBN 978-0-521-84514-4.

 

Kshetri L., Naseem F., Pandey P. 2019. Role of Serratia sp. as biocontrol agent and plant growth stimulator, with prospects of biotic stress management in plant. s. 169–200. W: Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Microorganisms for Sustainability, Vol. 13 (R. Sayyed, red.). Springer, Singapore. DOI: 10.1007/978-981-13-6986-5_6

 

Martinez-Sastre R., Garcia D., Minarro M., Martin-Lopez B. 2020. Farmers’ perceptions and knowledge of natural enemies as providers of biological control in cider apple orchards. Journal of Environmental Management 266: 110589. DOI: 10.1016/j.jenvman.2020.110589

 

Meena M., Zehra A., Dubey M.K., Aamir M., Gupta V.K., Upadhyay R.S. 2016. Comparative evaluation of biochemical changes in tomato (Lycopersicon esculentum Mill.) infected by Alternaria alternata and its toxic metabolites (TeA, AOH, and AME). Frontiers in Plant Science 7: 1408. DOI: 10.3389/fpls.2016.01408

 

Mielniczuk E., Skwaryło-Bednarz B. 2020. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy 10 (4): 509. DOI: 10.3390/agronomy10040509

 

Mnif I., Grau-Campistany A., Coronel-Leon J., Hammami I., Triki M.A., Manresa A., Ghribi D. 2016. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environmental Science and Pollution Research International 23: 6690–6699. DOI: 10.1007/s11356-015-5826-3

 

Neethu S., Vishnupriya S., Mathew J. 2016. Isolation and functional characterisation of endophytic bacterial isolates from curcuma longa. International Journal of Pharma and Bio Sciences 7 (1): 455–464.

 

Omer A.M. 2017. Inducing plant resistance against salinity using some rhizobacteria. Egyptian Journal of Desert Research 67 (1): 187–208. DOI: 10.21608/EJDR.2017.6498

 

Ongena M., Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16 (3): 115–125. DOI: 10.1016/j.tim.2007.12.009

 

Pages D., Rose J., Conrod S., Cuine S., Carrier P., Heulin T., Achouak W. 2008. Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One 3 (2): e1539. DOI: 10.1371/journal.pone.0001539

 

Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52: 347–375. DOI: 10.1146/annurev-phyto-082712-102340

 

Raaijmakers J.M., Mazzola M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology 50: 403–424. DOI: 10.1146/annurev-phyto-081211-172908

 

Sicuia O.A., Constantinescu F., Cornea C.P. 2015. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Romanian Biotechnological Letters 20 (5): 10737–10750.

 

Spadaro D., Droby S. 2016. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology 47: 39–49. DOI: 10.1016/j.tifs.2015.11.003

 

Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology 56 (4): 845–857. DOI: 10.1111/j.1365-2958.2005.04587.x

 

Tanaka K., Amaki Y., Ishihara A., Nakajima H. 2015. Synergistic effects of [Ile(7)]Surfactin homologues with Bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. Journal of Agricultural and Food Chemistry 63 (22): 5344–5353. DOI: 10.1021/acs.jafc.5b01198

 

Zhang Z., Yuen G.Y. 2000. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90 (4): 384–389. DOI: 10.1094/PHYTO.2000.90.4.384

 

Progress in Plant Protection (2021) 61: 319-326
First published on-line: 2021-11-05 15:16:23
http://dx.doi.org/10.14199/ppp-2021-034
Full text (.PDF) BibTeX Mendeley Back to list