Progress in Plant Protection

Identification and characterization of plant growth promoting endophytic bacteria
Identyfikacja i charakterystyka bakterii endofitycznych wykazujących cechy promujące wzrost roślin

Krzysztof Krawczyk, e-mail: k.krawczyk@iorpib.poznan.pl

Instytut Ochrony Roślin - Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Agnieszka Zwolińska, e-mail: A.Zwolinska@iorpib.poznan.pl

Instytut Ochrony Roślin - Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Joanna Kamasa, e-mail: J.Kamasa@iorpib.poznan.pl

Instytut Ochrony Roślin - Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Anna Maćkowiak-Sochacka, e-mail: A.Sochacka@iorpib.poznan.pl

Instytut Ochrony Roślin - Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Sebastian Przemieniecki, e-mail: microbiology.uwm@gmail.com

Uniwersytet Warmińsko-Mazurski w Olsztynie, Prawocheńskiego 17, 110F, 10-721 Olsztyn, Polska
Streszczenie

Endophytic bacteria colonizing plant tissues can play an important role in biotechnology through their plant growth promoting traits. Here we tested endophytic bacterial isolates obtained from the following host plants: maize (Zea mays L.), soy (Glicyne sp. Wilt), rape (Brassica napus L.), wheat (Triticum aestivum L.), poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch), calla (Zantedeschia sp. Spreng), geranium (Pelargonium sp. L`Her), rose (Rosa sp. L.), onion (Allium cepa L.), pea (Pisum sativum L.), cauliflower (Brassica oleracea L.) and cucumber (Cucumis L.). Growth promoting traits of the isolates were first examined on microbiological media. Next that exhibited the desired properties were identified using BIOLOG GEN III system. In general we obtained and tested 109 bacterial isolates. The performed tests revealed that 63% of examined isolates were able to dissolve inorganic phosphates, further 49% showed ability to protease production and 39% to lipase production. Another part (10%) of tested isolates showed cellulase and pyoverdine production ability.


Endofityczne bakterie żyjące w tkankach roślin mogą odegrać znaczącą rolę w biotechnologii poprzez wspomaganie wzrostu roślin, jako tzw. PGPB (Plant Growth-Promoting Bacteria). Badano izolaty bakteryjne pozyskane z tkanek roślin: (a) uprawnych: kukurydzy (Zea mays L.), soi (Glicyne sp. Wilt), rzepaku (Brassica napus L.), pszenicy (Triticum aestivum L.); (b) roślin ozdobnych: poinsecji (Euphorbia pulcherrima Willd. ex Klotzsch), kalii (Zantedeschia sp. Spreng), pelargonii (Pelargonium sp. L`Her), róży (Rosa sp. L.) oraz (c) roślin ogrodniczych: cebuli (Allium cepa L.), grochu (Pisum sativum L.), kalafiora (Brassica oleracea L.) i ogórka (Cucumis L.). Otrzymane izolaty bakteryjne badano na pożywkach mikrobiologicznych, w celu sprawdzenia czy wykazują one cechy biochemiczne, wspomagające wzrost roślin. Następnie, wybrane izolaty bakteryjne wykazujące pożądane cechy identyfikowano przy użyciu systemu BIOLOG GEN III. Ogółem pozyskano i przebadano 109 izolatów bakterii. Na podstawie przeprowadzonych testów wykazano, że 63% badanych izolatów ma zdolność do rozpuszczania fosforanów nieorganicznych, kolejne 49% wykazuje zdolność do produkcji proteazy oraz lipazy (39%). Część (10%) badanych izolatów wykazywało zdolność do wytwarzania celulazy i pyowerdyny.


Słowa kluczowe
plant growth promoting; identification; endophytes; testing; promowanie wzrostu roślin; identyfikacja; endofity; badanie
Referencje

Acea M.J., Moore C.R., Alexander M. 1988. Survival and growth of bacteria introduced into soil. Soil Biology and Biochemistry 20 (4): 509–515.

Alexander B.D., Zeeberi D.A. 1991. Use of chromazurol S to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 2: 39–54.

Boukhalfa H., Lack J., Reilly S.D., Hersman L., Neu M.P. 2003. Siderophore production and facilitated uptake of iron and plutonium in Pseudomonas putida. AIP Conference Procedings 673: 343–344.

Chanway C.P. 1997. Inoculation of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Science 43 (1): 99–112(14).

Compant S., Duffy B., Nowak J., Clément C., Ait Barka E. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology 71 (9): 4951–4959.

Cottyn B., Regalado E., Lanoot B., De Cleene M., Mew T.W., Swings J. 2001. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91: 282–292.

De Baere T., Verhelst R., Labit C., Verschraegen G., Wauters G., Claeys G., Vaneechoutte M. 2004. Bacteremic infection with Pantoea ananatis. Journal of Clinical Microbiology 42: 4393–4395.

Emerson D., Agulto L., Liu H., Liping L. 2008. Identifying and characterizing bacteria in an era of genomics and proteomics. BioScience 58 (10): 925–936.

Enebak S.A., Wei G., Kloepper J.W. 1998. Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings. Forest Science 44 (1): 139–144(6).

Esitken A. 2011. Use of Plant Growth Promoting Rhizobacteria in: Horticultural Crops. Chapter 8. p. 189–192. In: "Bacteria in Agrobiology: Crop Ecosystems" (D.K. Maheshwari, ed.). Springer-Verlag Berlin Heidelberg, 433 pp. DOI 10.1007/978-3--642-18357-7_8.

Gardner R.A., Kinkade R., Wang C., Phanstiel O. 2004. Total synthesis of petrobactin and its homologues as potential growth stimuli for Marinobacter hydrocarbonoclasticus, an oil-degrading bacteria. The Journal of Organic Chemistry 69: 3530–3537.

Ghodsalavi B., Ahmadzadeh M., Soleimani M., Madloo P.B., Taghizad-Farid R. 2013. Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Australian Journal of Crop Science 7 (3): 338–344.

Glick B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41 (2): 109–117.

Glick B.R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Hindawi Publishing Corpotation Scientifica. Volume 2012, Article ID963401, 15 pp. http://dx/doi.org/10.6064/2012/963401

Goszczynska T., Botha W.J., Venter S.N., Coutinho T.A. 2007. Isolation and identification of the causal agent of brown stalk rot, a new disease of maize in south Africa. Plant Disease 91: 711–718.

Gray E.J., Smith D.L. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry 37: 395–412.

Hankin L., Anagnostakis S.A. 1977. Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. Journal of General Microbiology 98: 109–115.

Hoffman H., Stindl S., Ludwig W., Stumpf A., Mehlen A., Heesemann J., Monget D., Schleifer K.H., Roggenkamp A. 2005. Reassignment of Enterobacter dissolvens to Enterobacter cloaceae as Enterobacter cloaceae subsp. dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Systematic and Applied Microbiology 28: 196–205.

Huang W., Liu J., Zhou G., Zhang D., Deng Q. 2011. Effect of precipitation on soil acid phosphatase activity in three successional forests in southern China. Biogeosciences 8: 1901–1910. DOI: 10.5194/bg-8-1901-2011.

Jasim B., Aswathy A.J., Jimtha J.C., Jyothis M., Radhakrishnan E.K. 2014. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. Biotechnology 4 (2): 197–204. DOI: 10.1007/s13205-013-0143-3.

Kannapiran E., Ramkumar V.S. 2011. Isolation of phosphate solubilizing bacteria from the sediments of Thondi coast, Palk Strait, Southeast coast of India. Annals of Biological Research 2 (5): 157–163. http://scholarsresearchlibrary.com/archive.html

Kelel M., Abera G., Yisma A., Molla B., Gebre N., Adugna T., Wessel G. 2014. Isolation of phosphate solubilizing bacteria from acacia tree rhizophere soil. Journal of Microbiology and Biotechnology Research 4 (5): 9–13. http://scholarsresearchlibrary.com/ archive.html

Klingler J.M., Stowe R.P., Obenhuber D.C., Groves T.O., Mishra S.K., Pierson D.L. 1992. Evaluation of the biolog automated microbial identification system. Applied and Environmental Microbiology 58 (6): 2089–2092.

Konopka A., Oliver L., Turcco R.F. 1998. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microbial Ecology 35 (2): 103–115.

Loper J.E., Ishimaru C.A., Carnegie S.R., Vanavichit A. 1993. Cloning and characterization of aerobactin biosynthesis genes of the biological control agent Enterobacter cloacae. Applied and Environmental Microbiology 59: 4189–4197.

Lucy M., Reed E., Glick B.R. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86: 1–25.

Marek-Kozaczuk M., Wielbo J., Pawlik A., Skorupska A. 2014. Nodulation competitiveness of Ensifer meliloti alfalfa nodule isolates and their potential for application as inoculants. Polish Journal of Microbiology 63 (4): 375–386.

Morales-Valenzuela G., Silva-Rojas H.V., Ochoa-Martínez D., Valadez-Moctezuma E., Alarcón-Zúńiga B., Zelaya-Molina L.X., Córdova-Téllez L., Mendoza-Onofre L., Vaquera-Huerta H., Carballo-Carballo A., Farfán-Gómez A., Ávila-Quezada G. 2007. First report of Pantoea agglomerans causing leaf blight and vascular wilt in maize and sorghum in Mexico. Plant Disease 91, p. 1365.

Paccola-Meirelles L.D., Ferreira A.S., Meirelles W.F., Marriel I.E., Castela C.R. 2001. Detection of a bacterium associated with a Leaf Spot Disease of maize in Brazil. Journal of Phytopathology 149: 275–279. DOI: 10.1046/j.1439-0434.2001.00614.x.

Park K.S., Kloepper J.W. 2000. Activation of PR-1a promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biological Control 18: 2–9.

Przemieniecki S.W., Kurowski T.P., Karwowska A. 2015. Plant growth promoting potential of Pseudomonas sp. SP0113 isolated from potable water from a closed water well. Archives of Biological Science Belgrade 67 (2): 663–673.

Radif H.M., Hassan S.S. 2014. Detection of hydrolytic enzymes produced by Azospirillum brasiliense isolated from root soil. World Journal of Experimental Biosciences 2 (2): 36–40.

Rezzonico F., Smits T., Montesinos E., Frey J.E., Duffy B. 2009. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiology 9: 204–208.

Ribeiro C.M., Cardoso E.J.B.N. 2012. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiological Research 167: 69–78.

Rodriguez J.N., Yano T., Beriam L.O.S., Destefano S.A.L., Oliveira V.M., Rosato Y.B. 2003. Comparative RFLP-ITS analysis between Enterobacter cloaceae strains isolated from plants and clinical origin. Arquivos do Instituto Biológico 70: 367–372.

Rovira A.D. 1965. Interactions between plant roots and soil microorganisms. Annual Review of Microbiology 19: 241–266.

Sharma S., Kumar V., Tripathi R.B. 2011. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of Microbiological Biotechnology and Research 1 (2): 90–95. http://scholarsresearchlibrary.com/archive.html

Tian F., Ding Y., Zhu H., Yao L., Du B. 2009. Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Brazilian Journal of Microbiology 40: 276–284.

Van Overbeek L.S., Van Elsas J.D. 1995. Root exudates-induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Applied and Environmental Microbiology 61: 890–898.

Wilson M.K., Abergel R.J., Arceneaux J.E., Raymond K.N., Byers B.R. 2010. Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. Biometals 23: 129–134.

Wright S.A.I., Zumoff C.H., Schneider L., Beer S.V. 2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology 67 (1): 284–292.

Progress in Plant Protection (2016) 56: 100-109
Data pierwszej publikacji on-line: 2016-03-10 11:05:49
http://dx.doi.org/10.14199/ppp-2016-018
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy