Progress in Plant Protection

Systemic Acquired Resistance (SAR) in integrated plant protection
Systemiczna odporność nabyta (Systemic Acquired Resistance – SAR) w integrowanej ochronie roślin

Henryk Pospieszny, e-mail: h.pospieszny@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Zakład Wirusologii i Bakteriologii, Władysława Węgorka 20, 60-318 Poznań, Polska
Streszczenie

Disease control is largely based on the use of different chemical compounds toxic to pathogens. However, the hazardous effect of these chemicals on the environment and human health strongly forces to seek harmless means of disease control. During the evolutionary process, plants have developed many different defence mechanisms against pathogens. Systemic Acquired Resistance (SAR) is one of the most promising defence mechanisms which is induced not only by pathogens but also by molecules released during plant–pathogen interaction. Exogenous application of SAR inducers is an interesting and safe for the environment a means of plant protection, because they do not act directly on pathogens (and other microorganisms) but only by a plant metabolism. The SAR acts against broad-spectrum of pathogens and can be quite long time lasting but it is rarely complete. The SAR is a plant response and that can be affected by numerous factors for instance environment, plant and pathogen genotypes, plant health condition, and means of the inductor application. The use of the resistance inducers is still limited in the practice. Our current knowledge about it comes mainly from experimental trials and there is a need to develop more wide scale field experiments. Presently, the following benefits of using resistance inducers can be expected: (1) reduction of damage of pathogens, (2) reduction of application of pesticides that present hazards to environmental human, (3) inductors can be alternative to genetically modified plants, (4) they can be applied together with fungicide.


Ochrona roślin przed patogenami opiera się głównie na stosowaniu pestycydów, które są bezpośrednio toksyczne dla patogenów. Chemikalia te są szkodliwe dla środowiska i człowieka, co zmusza do poszukiwania bardziej bezpiecznych sposobów ochrony roślin. Rośliny w trakcie ewolucji nabyły mechanizmy obronne, z których bardzo obiecująca jest systemiczna odporność nabyta (Systemic Acquired Resistance – SAR). SAR jest indukowana przez patogeny, ale także przez inne czynniki powodujące wytwarzanie molekuł sygnałowych w roślinie. Systemiczna odporność nabyta chroni rośliny przed zakażeniem przez szerokie spektrum patogenów i jest stosunkowo trwała, ale rzadko całkowita. SAR jest reakcją rośliny i na jej wystąpienie mają wpływ liczne czynniki, takie jak: warunki środowiskowe, genotypy rośliny i patogenu, kondycja rośliny, sposób aplikacji induktora oraz inne. Stosowanie induktorów w praktyce jest wciąż ograniczone. Wiedza o zjawisku pochodzi głównie z badań eksperymentalnych i istnieje potrzeba rozwinięcia na szeroką skalę badań w warunkach polowych. Obecnie, ze stosowania induktorów SAR można oczekiwać następujących korzyści: (1) ograniczanie szkodliwości patogenów, (2) ograniczanie stosowania szkodliwych dla człowieka i środowiska pestycydów, (3) są alternatywą dla roślin genetycznie modyfikowanych, (4) można je stosować łącznie z fungicydami.


Słowa kluczowe
disease control; induced resistance; systemic acquired resistance ; localized acquired resistance; factors affecting SAR induction; ograniczanie chorób; odporność indukowana; systemiczna odporność nabyta; induktory odporności; czynniki wpływające na indukcję SAR
Referencje

Bostock R.M. 2005. Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annual Review of Phytopathology 43: 545–580.

 

Chester K.S. 1933. The problem of acquired physiological immunity in plants. The Quarterly Review of Biology 8 (2): 275–324.

 

Cluzet S., Torregrosa C., Jacquet C., Lafitte C., Fournier J., Mercier L., Salamagne S., Briand X., Esquerré-Tugayé M.T., Dumas B. 2004. Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva ssp. Plant Cell and Environment 27 (7): 917–928.

 

Cools H.J., Ishii H. 2002. Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes phenylalanine ammonia lyase gene (PALI) for enhanced expression upon attack with the a pathogenic fungus. Physiological and Molecular Plant Pathology 61: 273–280.

 

Cordier C., Pozo M.J., Barea J.M., Gianinazzi S., Gianinazzi-Pearson V. 1998. Cell defence responses associated with localized and systemic resistance Phytophtora parasitica induced by in tomato an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interactions 11 (10): 1017–1028.

 

Dietrich R., Ploss K., Heil M. 2004. Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply. Plant, Cell and Environment 27 (7): 896–906.

 

Hammerschmidt R. 2007. Introduction: definitions and some history. Chapter 1. p. 1–8. In: “Induced Resistance for Plant Defence: a Sustainable Approch to Crop Protection” (D. Walters, A. Newton, G. Lyon, eds.). Blackwell Publishing, Oxford, 258 pp.

 

Hardy G.E.St.J., Barrett S., Shearer B.L. 2001. The future of phosphate as a fungicide to control the soilborne plant pathogen Phytophtora cinnamomi in natural ecosystems. Australasian Plant Pathology 30: 133–139.

 

Heil M., Baldwin I.T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science 7 (2): 61–67.

 

Heil M., Hilpert A., Kaiser W., Linsenmair K.E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology 88 (4): 645–654.

 

Henry G., Thonart P., Ongena M. 2012. PAMPs, MAMPs, DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnology, Agronomy and Society and Environment 16 (2): 257–268.

 

Herms D.A., Mattson W.J. 1992. The dilemma of plants: to grow or defend. The Quarterly Review of Biology 67 (3): 283–335.

 

Hong J.K., Hwang B.K., Kim C.H. 1999. Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-beta-amino-n-butyric acid. Journal of Phytopathology 147 (4): 193–198.

 

Huang Ch.-H., Vallad G.E., Zhang S., Wen A., Balogh B., Figueiredo J.F.L., Behlau F., Jones J.B., Momol M.T., Olson S.M. 2012. Effect of application frequency and reduced rates of acibenzolar-S-methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Diseases 96 (2): 221–227.

 

Iwata M. 2001. Probenazole – a plant defence activator. Pesticide Outlook 12 (1): 28–31.

 

Ji P., Yin J., Kone D. 2011. Application of acibenzolar-S-methyl and standard fungicides for control of Phytophthora blight on squash. Crop Protection 30 (12): 1601–1605.

 

Kappers I.F., Aharoni A., van Herpen T.W., Luckerhoff L.L., Dicke M., Bouwmeester H.J. 2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309 (5743): 2070–2072.

 

Kombrink E., Schmelzer E. 2001. The hypersensitivity response and its role in local and systemic disease resistance. European Journal of Plant Pathology 107 (1): 69–78.

 

Kosaka H., Aikawa T., Ogura N., Tabata K., Kiyohara T. 2001. Pine wilt disease caused by the pine wood nematode: the induced resistance of pine trees by the avirulent isolates of nematode. European Journal of Plant Pathology 107: 667–675.

 

Kuc J. 1982. Induced immunity to plant disease. BioScience 32 (11): 854–860.

 

Kunz W., Schulter R., Maetzke T. 1997. The chemistry of the benzothiadiazole plant activators. Pesticide Science 50: 275–282.

 

Kvedaras O.L., An M., Choi Y.S., Gurr G.M. 2010. Silicon enhances natural enemy attraction and biological through induced plant defences. Bulletin of Entomological Research 100 (3): 367–371.

 

Lewandowski P., Kukawka R., Pospieszny H., Smiglak M. 2014. Bifunctional quaternary ammonium salts based on benzo[1,2,3] thiadiazole-7-carboxylate as plant systemic acquired resistance inducers. New Journal of Chemistry 38 (4): 1372–1375.

 

Lugtenberg B., Kamilowa F. 2009. Plant-growth-promoting rizobacteria. Annual Review of Microbiology 63: 541–556.

 

Luna E., Bruce T.J.A., Roberts M.R., Flors V., Ton J. 2012. Next-generation systemic acquired resistance. Plant Physiology 158 (2): 844–853.

 

Murray D.C., Walters D.R. 1992. Increased photosynthesis and resistance to rust infection in upper, uninfected leaves of rusted broad bean (Vicia faba L.). New Phytologist 120 (2): 235–242.

 

Oxley S.J.P., Walters D.R. 2012. Control of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) with resistance elicitors. Crop Protection 40: 59–62.

 

Poppy G.M., Wilkinson M.J. (eds.). 2005. Gene Flow from GM Plants – a Manual for Assessing, Measuring the Risks. Blackwell Publishing, Oxford, UK, 239 pp.

 

Pospieszny H. 1997. Antiviroid activity of chitosan. Crop Protection 16 (2): 105–106.

 

Pospieszny H., Chirkov S., Atabekov J. 1991. Induction of antiviral resistance in plants by chitosan. Plant Science 79 (1): 63–68.

 

Pozo M.J., Azcón-Aguilar C. 2007. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology 10 (4): 393–398.

 

Qian Z.-G., Zhao Z.-J., Xu Y., Qian X., Hong J.-J. 2006. Novel synthetic 2,6-dichloroisonicotinate derivatives as effective elicitors for inducing the biosynthesis of plant secondary metabolites. Applied Microbiology and Biotechnology 71 (2): 164–167.

 

Ross A.F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340–358.

 

Ryu Ch.-M., Kim J., Choi O., Kim S.H., Park Ch.S. 2006. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control 39: 282–289.

 

Sharma K., Bruns C., Butz A.F., Finckh M.R. 2012. Effects of fertilizers and plant strengtheners on the susceptibility of tomatoes to single and mixed isolates of Phytophtora infestans. European Journal of Plant Pathology 133 (3): 739–751.

 

Sharma K., Butz A.F., Finckh M.R. 2010. Effects of host and pathogen genotypes on inducibility of resistance in tomato (Solanum lycopersicum) to Phytophtora infestans. Plant Pathology 59 (6): 1062–1071.

 

Spoel S.H., Dong X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology 12 (2): 89–100.

 

Śmiglak M., Kukawka R., Lewandowski P., Pospieszny H. 2014. Cationic derivatives of the plant resistance inducer benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl ester (BTH) as bifunctional ionic liquids. Tetrahedron Letters 55: 3565–3568.

 

Thakur M., Sohal B.S. 2013. Role of elicitors in inducing resistance in plants against pathogen infection: a review. International Scholary Research Notices Biochemistry 2013, Article ID 762412, 10 pp.

 

Uchiyama M., Abe H., Sato R., Shimura M., Watanabe T. 1973. Fate of 3-allyloxy-2,3-benzisothiozole 1,1-dioxide (Oryzemate) in rice plants. Agricultural and Biological Chemistry 37 (4): 735–745.

 

Van Hulten M., Pelser M., Van Loon L.C., Pieterse C.M.J., Ton J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103: 5602–5607.

 

Van Loon L.C. 1985. Pathogenesis - related proteins. Plant Molecular Biology 4 (2): 111–116.

 

Van Loon L.C., Antoniw J.F. 1982. Comparision of the effects of salicylic acid and ethephon with virus-induced hypersensitivity and acquired resistance in tobacco. Netherlends Journal of Plant Pathology 88 (6): 237–256.

 

Van Loon L.C., Bakker P.A.H.M., Pieterse C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453–483.

 

Van Wees S.C., Van der Ent S., Pieterse C.M. 2008. Plant immune responses triggered by beneficial microbes. Current Opinion of Plant Biology 11 (4): 443–448.

 

Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., Heier T., Hückelhoven R., Neumann C., von Wettstein D., Franken P., Kogel K.-H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy Sciences of the United States of America 102 (38): 13386–13391.

 

Walters D.R., Paterson L., Havis N.D. 2010. Control of foliar diseases of spring barley using resistance elicitors. Journal the Dundee Conference. Crop Protection in Northern Britain 2010. Dundee, UK, 23–24 February 2010: 91–96.

 

White R.F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99 (2): 410–412.

 

Xing K., Zhu X., Peng X., Qin S. 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development 35 (2): 569–588.

Progress in Plant Protection (2016) 56: 436-442
Data pierwszej publikacji on-line: 2016-11-16 09:06:29
http://dx.doi.org/10.14199/ppp-2016-068
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy