Progress in Plant Protection

Chlorophyll a + b content in leaves of spring wheat (Triticum aestivum L.) after application of MCPA and selected HILs
Zawartość chlorofilu a + b w liściach pszenicy jarej (Triticum aestivum L.) po zastosowaniu MCPA oraz wybranych HILs

Marcin Grobela, e-mail: grobela@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Streszczenie

The aim of the study was to examine the effect of foliar application of three herbicidal ionic liquid forms of MCPA ([Arq 2HT][MCPA], [cocoBET][MCPA], [p-DADMA][MCPA]) on chlorophyll a + b content in leaves of spring wheat. Spectrophotometric method was used to measure chlorophyll a + b content 24, 72 and 168 h after fields were treated with Chwastox Extra 300 SL (a.s. MCPA). The data was compared to the control that consisted of a commercial formulation of MCPA as a salt. The field study revealed that a chlorophyll a + b content measured 24 h after spraying with MCPA as a salt was higher by 17%, 72 h by 14% but 168 h it was lower by 16%. The highest decreases in chlorophyll a + b content were observed 168 h after application of Chwastox Extra 300 SL compared to the control and [p-DADMA][MCPA] and they were 16.2% and 17%. However, in comparison with [Arq 2HT][MCPA] and [coco BET][MCPA] the results were similar and amounted to about 2.5%. The results do not confirm a significant impact on the content of photosynthetic pigments in spring wheat. The application of HILs as an alternative herbicide also did not result in adverse chlorophyll a + b decrease.

 

Celem przeprowadzonych badań była spektrofotometryczna ocena zmian zawartości chlorofilu w liściach pszenicy jarej po 24, 72 i 168 h od momentu zastosowania opryskiwania środkiem Chwastox Extra 300 SL (s.cz. MCPA) oraz wybranymi herbicydowymi cieczami jonowymi HILs ([Arq 2HT][MCPA], [cocoBET][MCPA], [p-DADMA][MCPA]). Poziom chlorofilu a + b w pszenicy jarej po 24 h, na którą zaaplikowano MCPA w postaci soli był wyższy o 17%, a po 72 h o 14%, natomiast po 168 h niższy o 16% w porównaniu do stężenia barwników roślin z obiektów kontrolnych. Największe spadki zawartości chlorofilu a + b zaobserwowano po 168 h dla herbicydu Chwastox Extra 300 SL w porównaniu do kontroli oraz [p-DADMA][MCPA] i wynosiły one 16,2% oraz 17%. Natomiast w porównaniu z [Arq 2HT] [MCPA] i [coco BET][MCPA] uzyskane wyniki były podobne i wynosiły około 2,5%. Dane jakie uzyskano nie potwierdzają istotnego wpływu stosowania MCPA na zawartość pigmentów fotosyntetycznych w pszenicy jarej. Aplikacja HILs jako herbicydu alternatywnego również nie wywołała niepożądanych efektów działania w postaci obniżenia zawartości chlorofilu a + b.

Słowa kluczowe

chlorophyll; herbicidal ionic liquids; MCPA; spring wheat; chlorofil; herbicydowe ciecze jonowe; pszenica jara

Referencje

Arnon D.I., Allen M.B., Whatley F.R. 1956. Photosynthesis by isolated chloroplasts IV. General concept and comparison of three photo chemical reactions. Biochimica et Biophysica Acta 20 (3): 449–461.

 

Baker N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59 (1): 89–113. DOI: 10.1146/annurev.arplant.59.032607.092759.

 

Bates D., Maechler M., Bolker B., Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (1): 1–48. DOI: 10.18637/jss.v067.i01.

 

Bojović B., Stojanović J. 2005. Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Archives of Biological Sciences 57 (4): 283–290.

 

Ceylan Y., Kutman U.B., Mengutay M., Cakmak I. 2016. Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat. Plant Soil 406 (1–2): 145–156. DOI: 10.1007/s11104-016-2871-8.

 

Croft H., Chen J.M., Luo X., Bartlett P., Chen B., Staebler R.M. 2017. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology 23 (9): 3513–3524. DOI: 10.1111/gcb.13599.

 

Devine M.D., Shukla A. 2000. Altered target sites as a mechanism of herbicide resistance. Crop Protection 19 (8–10): 881–889. DOI: 10.1016/S0261-2194(00)00123-X.

 

Ekmekci Y., Terzioglu S. 2005. Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pesticide Biochemistry and Physiology 83 (2–3): 69–81. DOI: 10.1016/j.pestbp.2005.03.012.

 

Gao Y.F., Shi M.W., Wang J.H. 2012. The influence of chlorophenoxy herbicides MCPA on creeping bentgrass physiological index. Advanced Materials Research 356–360: 2763–2766. DOI: 10.4028/www.scientific.net/AMR.356-360.2763.

 

Giszter R., Niemczak M., Marcinkowska K., Walkiewicz F., Praczyk T., Pernak J. 2013. Nowe herbicydy poli(diallilodimetyloamoniowe). Synteza i aktywność biologiczna. [New polydiallyldimethylammonium herbicides. Synthesis and biological activity]. Przemysł Chemiczny 92 (9): 1602–1605.

 

Grobela M. 2016. Differences in the uptake of Mn, Zn, and Cu by Hordeum vulgare L. following applications of MCPA-based herbicides and their ionic liquid forms. Polish Journal of Environmental Studies 25 (5): 1931–1936. DOI: 10.15244/pjoes/62761.

 

Grobela M. 2017. Zawartość chlorofilu a + b w liściach jęczmienia jarego po zastosowaniu MCPA oraz wybranych HILs. [Chlorophyll a + b content in leaves of spring barley after MCPA and selected HILs application]. Progress in Plant Protection 57 (1): 70–74. DOI: 10.14199/ppp-2017-012.

 

Hough W.L., Smiglak M., Rodríguez H., Swatloski R.P., Spear S.K., Daly D.T., Pernak J., Grisel J.E., Carliss R.D., Soutullo M.D., Davis J.H. Jr., Rogers R.D. 2007. The third evolution of ionic liquids: active pharmaceutical ingredients. New Journal of Chemistry 31 (8): 1429–1436. DOI: 10.1039/B706677P.

 

Kobyłecka J., Skiba E. 2008. The effect of phenoxyacetic herbicides on the uptake of copper, zinc and manganese by Triticum aestivum L. Polish Journal of Environmental Studies 17 (6): 895–901.

 

Kordala-Markiewicz R., Rodak H., Markiewicz M., Walkiewicz F., Sznajdrowska A., Materna K., Marcinkowska K., Praczyk T., Pernak J. 2014. Phenoxy herbicidal ammonium ionic liquids. Tetrahedron 70 (32): 4784–4789.

 

Lenth R.V. 2016. Least-squares means: The R package lsmeans. Journal of Statistical Software 69 (1): 1–33. DOI: 10.18637/jss.v069.i01.

 

Lichtenthaler H.K., Wellburn A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11 (5): 591–592. DOI: 10.1042/bst0110591.

 

Łozowicka B., Wołejko E., Konecki R. 2016. Wpływ wybranych substancji czynnych fungicydów, herbicydów i ich terminów aplikacji na poziom barwników asymilacyjnych w Triticum aestivum L. [Influence of selected active substances of fungicides and herbicides and time of their application on chlorophyll content in Triticum aestivum L.]. Progress in Plant Protection 56 (2): 186–190. DOI: 10.14199/ppp-2016-031.

 

Mackinney G. 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140: 315–322.

 

Pernak J., Niemczak M., Chrzanowski Ł., Ławniczak Ł., Fochtman P., Marcinkowska K., Praczyk T. 2016. Betaine and carnitine derivatives as herbicidal ionic liquids. Chemistry – A European Journal 22 (34): 12012–12021. DOI: 10.1002/chem.201601952.

 

Pernak J., Niemczak M., Zakrocka K., Praczyk T. 2013. Herbicidal ionic liquid with dual-function. Tetrahedron 69 (38): 8132–8136. DOI: 10.1016/j.tet.2013.07.053.

 

Pernak J., Syguda A., Janiszewska D., Materna K., Praczyk T. 2011. Ionic liquids with herbicidal anions. Tetrahedron 67 (26): 4838–4844. DOI: 10.1016/j.tet.2011.05.016.

 

Politycka B. 2007. Produktywność roślin. s. 353–372. W: „Fizjologia roślin, Od teorii do nauk stosowanych” (M. Kozłowska, red.). PWRiL, Poznań, 544 ss. ISBN 978-83-09-01023-4.

 

Praczyk T., Kardasz P., Jakubiak E., Syguda A., Materna K., Pernak J. 2012. Herbicidal ionic liquids with 2,4-D. Weed Science 60 (2): 189–192. DOI: 10.1614/WS-D-11-00171.1.

 

R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org [Accessed: 15.02.2017].

 

Shamshina J.L., Kelley S.P., Gurau G., Rogers R.D. 2015. Chemistry: Develop ionic liquid drugs. Nature 528 (7581): 188–189. DOI: 10.1038/528188a.

 

Starck Z. 2008. Stresy wynikające z nieprawidłowego odżywiania roślin azotem. [Stresses provoked by incorrect nitrogen nutrition in plants]. Postępy Nauk Rolniczych 60 (1): 27–42.

 

Tatagiba S.D., DaMatta F.M., Rodrigues F.A. 2016. Magnesium decreases leaf scald symptoms on rice leaves and preserves their photosynthetic performance. Plant Physiology and Biochemistry 108: 49–56. DOI: 10.1016/j.plaphy.2016.07.002.

 

Tatarková V., Hiller E., Vaculík M. 2013. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and Environmental Safety 92: 215–221. DOI: 10.1016/j.ecoenv.2013.02.005.

 

Tränkner M., Jákli B., Tavakol E., Geilfus Ch., Cakmak I., Dittert K., Senbayram M. 2016. Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants. Plant Soil 406 (1–2): 409–423. DOI: 10.1007/s11104-016-2886-1.

 

Wang M., Zhou Q. 2006. Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety 64 (2): 190–197. DOI: 10.1016/j.ecoenv.2005.03.032.

 

Žaltauskaitė J., Brazaitytė V. 2013. Assessment of the effects of sulfonylureas herbicide amidosulfuron application on target and non-target organisms. Fresenius Environmental Bulletin 22 (7 A): 1977–1982.

 

Žaltauskaitė J., Kišonaitė G. 2014. The effects of phenoxy herbicide MCPA on non-target vegetation in spring wheat (Triticum aestivum L.) culture. Biologija 60 (3): 148–154. DOI: 10.6001/biologija.v60i3.2974.

Progress in Plant Protection (2018) 58: 187-192
Data pierwszej publikacji on-line: 2018-08-01 12:59:01
http://dx.doi.org/10.14199/ppp-2018-024
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy