Progress in Plant Protection

Assessment of the biostimulative effect of Lithovit and Kelpak on selected biometric and qualitative features of winter oilseed rape
Ocena biostymulującego działania preparatów Lithovit i Kelpak na wybrane cechy biometryczne i jakościowe rzepaku ozimego

Kinga Matysiak, e-mail: K.Matysiak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Wojciech Miziniak, e-mail: W.Miziniak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Toruniu, Pigwowa 16, 87-100 Toruń, Polska
Streszczenie

Biostimulants are products that can modify physiological functions of plants, strengthen plant natural defenses against different biotic and abiotic stresses and improve nutrition efficiency. They can help plants to adapt to unfavorable conditions by either suppressing or eliminating plant growth-limiting factors affecting plant during its life. Seaweeds are the most essential living organisms used commercially as biostimulants on a wide scale. Fertilizers containing numerous microelements are another group affecting positively plant response to environmental stress. Field trials evaluating application of two biostimulants were carried out at the Institute of Plant Protection – National Research Institute in Poznan (Poland) in the 2011–2013. The aim of the study was to assess the influence of carbon dioxide leaf fertilizer (Lithovit) and seaweeds (Kelpak) applied separately or in the mixtures on winter oilseed rape plants. The results obtained in the study confirm the significant impact of weather conditions on seaweeds and nanofertilizer activity. Positive effect of the examined substances on plant height, chlorophyll content, number of seeds in pods, mass of 1000 seeds and yield was revealed in the year with worst humidity conditions. Kelpak and Lithovit activity was more beneficial to oilseed rape when used at the earlier plant growth stage (BBCH 32), regardless of whether the products were applied separately or in a mixture. The type of biostimulator (algae extract or mineral biostimulator) was not a factor determining its effect on winter rapeseed plants.

 

Biostymulatory to produkty, które mogą modyfikować fizjologiczne funkcje roślin, wzmacniają naturalne mechanizmy obronne roślin przeciwko stresom biotycznym i abiotycznym, a także poprawiają przyswajalność składników odżywczych. Algi morskie są najistotniejszymi żywymi organizmami używanymi komercyjnie jako biostymulatory. Inną grupą substancji, którym przypisuje się dobroczynne działanie w tolerancji roślin na stresy są nawozy zawierające liczne mikroelementy. W latach 2011–2013 w Instytucie Ochrony Roślin – Państwowym Instytucie Badawczym przeprowadzono badania polowe nad działaniem dwóch preparatów o działaniu biostymulującym na rośliny rzepaku. Celem badań była ocena działania wyciągu z alg (Kelpak) oraz nawozu dolistnego (Lithovit) na wzrost, rozwój i plonowanie rzepaku. Wyniki uzyskane w pracy potwierdzają znaczny wpływ warunków pogodowych na działanie preparatu z alg oraz nanonawozu. Stymulujące działanie badanych substancji na wysokość roślin, zawartość chlorofilu, liczbę nasion w łuszczynach, masę 1000 nasion i plon ujawniło się w roku badawczym charakteryzującym się gorszymi warunkami wilgotnościowymi. Kelpak i Lithovit korzystniej działały na rośliny rzepaku zwłaszcza, gdy stosowano je we wcześniejszej fazie rozwojowej (BBCH 32), bez względu na to czy były aplikowane oddzielnie, czy w mieszaninie. Rodzaj biostymulatora (ekstrakt z alg czy biostymulator mineralny) nie był czynnikiem determinującym jego działanie na rośliny rzepaku ozimego.

Słowa kluczowe

biostimulants; algae; nanofertilizer; trace elements; Brassica napus var. oleifera; chlorophyl; yield quality; biostymulatory; algi; nanonawóz; pierwiastki śladowe; chlorofil; jakość plonu

Referencje

Abdelghafar M.S., Al-Abd M.T., Helaly A.A., Rashwan A.M. 2016. Foliar application of lithovit and rose water as factor for increasing onion seed production. Natural Sciences 14 (3): 53–61. DOI: 10.7537/marsnsj14031608.

 

Abou-Shlell M.K., Abd El-Dayem H.M., Ismaeil F.H.M., Abd El-Aal M.M., El-Emary F.A. 2017. Impact of the foliar spray with benzyl adenine, paclobutrzol, algae extract, some mineral nutrients and lithovit on anatomical features of Moringa olifera plant. Annals of Agricultural Sciences, Moshtohor 51 (1): 49–62.

 

Al-Hameedawi A.M.S., AL-Malikshah Z.R.J. 2016. Effect of sparing with Kelpak, Hletab and Grofalcs on storability characters of fruits of sours orange (Citrus aurantium L.). Theoretical & Applied Science 1: 47–51. DOI: 10.15863/TAS.2016.01.33.10.

 

Al-Hawezy S.M.N. 2015. The use of Kelpak to improve the vegetative growth of loquat (Eriobotya Jappanica L.) seedling. Zanco Journal of Pure and Applied Sciences 27: 1–4. DOI: 10.21271/zjpas.v27i6.334.

 

Ali A., Perveen S., Shah S.N.M., Zhang Z., Wahid F., Shah M., Bibi S., Majid A. 2014. Effect of foliar application of micronutrients on fruit quality of peach. American Journal of Plant Sciences 5 (9): 1258–1264. DOI: 10.4236/ajps.2014.59138.

 

Arif M., Chohan M.A., Ali S., Gul R., Khan S. 2006. Response of wheat to foliar application of nutrients. Journal of Agricultural and Biological Science 1 (4): 30–34.

 

Bai N.R., Banu N.R.L., Prakash J.W., Goldi S.J. 2007. Effects of Asparagopsis taxiformis extract on the growth and yield of Phaseolus aureus. Journal of Basic Applied Biology 1 (1): 6–11.

 

Bilal B.A. 2010. Lithovit: An innovative fertilizer. The 3rd e-Conference on Agricultural BioSciences (IeCAB 2010), 1st-15th June 2010. http://www.m.elewa.org/econferenceIeCAB.php [dostęp: 12.08.2019].

 

Botelho R.V., Rusin C., Tumbarello G., Rombolà A.D. 2018. Yield and physicochemical characteristics of grapes from vines treated with extract of Ecklonia maxima. Applied Research & Agrotechnology 11 (2): 7–14. DOI: 10.5935/PAeT.V11.N2.01.

 

Calvo P., Nelson L., Kloepper J.W. 2014. Agricultural uses of plant biostimulants. Plant and Soil 383 (1–2): 3–41. DOI: 10.1007/s11104-014-2131-8.

 

Craigie J.S. 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology 23 (3): 371–393. DOI: 10.1007/s10811-010-9560-4.

 

Crouch I.J., van Staden J. 1993. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation 13 (1): 21–29. DOI: 10.1007/BF00207588.

 

De Waele D., McDonald A.H., De Waele E. 1988. Influence of seaweed concentrate on the reproduction of Pratylenchus zeae (Nematoda) on maize. Nematologica 34: 71–77. DOI: 10.1163/002825988X00062.

 

du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196: 3–14. DOI: 10.1016/j.scienta.2015.09.021.

 

El-Fouly M.M., Moubarak Z.M., Salama Z.A. 2000. Micronutrient foliar application increases salt tolerance of tomato seedlings. International Symposium on Techniques to Control Salination for Horticultural Productivity 573: 467–474. DOI: 10.17660/ActaHortic.2002.573.57.

 

Eris A., Sivritepe H.Ö., Sivritepe N. 1995. The effect of seaweed (Ascophyllum nodosum) extract on yield and quality criteria in peppers. Acta Horticulturae 412: 185–192. DOI: 10.17660/ActaHortic.1995.412.21.

 

Fang Y., Wang L., Xin Z., Zhao L., An X., Hu Q. 2008. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. Journal of Agricultural and Food Chemistry 56 (6): 2079–2084. DOI: 10.1021/jf800150z.

 

Ferreira M.I., Lourens A.F. 2002. The efficacy of liquid seaweed extract on the yield of canola plants. South African Journal of Plant and Soil 19 (3): 159–161. DOI: 10.1080/02571862.2002.10634457.

 

Grewal H.S., Zhonggu L., Graham R.D. 1997. Influence of subsoil zinc on dry matter production, seed yield and distribution of zinc in oilseed rape genotypes differing in zinc efficiency. Plant and Soil 192 (2): 181–189. DOI: 10.1023/A:1004228610138.

 

Günef A., Alpaslan M., Inal A., Adak S., Eraslan F., Cicek N. 2003. Effects of boron fertilization on the yield and some yield components of bread and durum wheat. Turkish Journal of Agriculture and Forestry 27: 329–335.

 

Hamed E.S. 2018. Effect of nitrogenous fertilization and spraying with nano-fertilizer on Origanum syriacum L. var. syriacum plants under North Sinai conditions. Journal of Pharmacognosy and Phytochemistry 7 (4): 2902–2907.

 

Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A.T., Craigie J.S., Norrie J., Prithiviraj B. 2009. Seaweed extracts as biostimulants of plant growth and development. Plant Growth Regulation 28: 386–399. DOI: 10.1007/s00344-009-9103-x.

 

Kumar G., Sahoo D. 2011. Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology 23 (2): 251–255. DOI: 10.1007/s10811-011-9660-9.

 

Matysiak K., Kaczmarek S., Krawczyk R. 2011. Influence of seaweed extracts and mixture of humic and fluvic acids on germination and growth of Zea mays L. [Wpływ ekstraktów z alg morskich oraz kwasów huminowych i fulwowych na kiełkowanie i początkowy wzrost Zea mays L.]. Acta Scientiarum Polonorum, Agricultura 10 (1): 33–45.

 

Matysiak K., Kaczmarek S., Leszczyńska D. 2012. Wpływ ekstraktu z alg morskich Ecklonia maxima na pszenicę ozimą odmiany Tonacja. [Influence of liquid seaweed extract of Ecklonia maxima on winter wheat cv Tonacja]. Journal of Research and Applications in Agricultural Engineering 57 (4): 44–47.

 

Mooney P.A., van Staden J. 1986. Algae and cytokinins. Journal of Plant Physiology 123 (1): 1–21. DOI: 10.1016/S0176-1617(86)80061-X.

 

Nedumaran T., Perumal P. 2009. Effect of seaweed liquid fertilizer on the germination and growth of seedling of mangrove – Rhizophora ucronata Boir. Journal of Phytology 1 (3): 142–146.

 

Sangha J.S., Hobson D., Hiltz D., Critchley A.T., Prithiviraj B. 2010. The use of commercial seaweed extracts as a means to alleviate abiotic stress in land plants: a review. Algal Resources 3: 153–168.

 

Stirk W.A., Novák O., Strnad M., Van Staden J. 2003. Cytokinins in macroalgae. Plant Growth Regulation 41 (1): 13–24. DOI: 10.1023/A:1027376507197.

 

Stirk W.A., van Staden J. 1997. Comparison of cytokinin- and auxin-like activity in some commercially used seaweed extracts. Journal of Applied Phycology 8: 503–508.

 

Szczepanek M., Grzybowski K. 2016. Yield and macronutrient accumulation in grain of spring wheat (Triticum aestivum ssp. vulgare L.) as affected by biostimulant application. Advances in Crop Science and Technology 4 (228): 1–4. DOI: 10.4172/2329-8863.1000228.

 

Thevanathan R. Anjanadutta, Dinamani D.S., Bhavani L.G. 2005. Studies on the impact of application of marine algal manure and liquid fertiliser on the linear growth of the seedlings of some pulses. Seaweed Research and Utilisation 27 (1/2): 125–133.

 

Torun A., ltekin I.G.Ã., Kalayci M., Yilmaz A., Eker S., Cakmak I. 2001. Effects of zinc fertilization on grain yield and shoot concentrations of zinc, boron, and phosphorus of 25 wheat cultivars grown on a zinc deficient and boron-toxic soil. Journal of Plant Nutrition 24 (11): 1817–1829. DOI: 10.1081/PLN-100107314.

 

Wierzbowska J., Cwalina-Ambroziak B., Glosek M., Sienkiewicz S. 2015. Effect of biostimulators on yield and selected chemical properties of potato tubers. Journal of Elementology 20 (3): 757–768. DOI: 10.5601/jelem.2014.19.4.799.

 

Zhang X., Wang K., Ervin E.H. 2010. Optimizing dosages of seaweed extract-based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance. Crop Science 50 (1): 316–320. DOI: 10.2135/cropsci2009.02.0090.

Progress in Plant Protection (2019) : 0-0
Data pierwszej publikacji on-line: 2019-09-27 10:17:49
http://dx.doi.org/10.14199/ppp-2019-025
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy