Progress in Plant Protection

The role and yield-forming effect of silicon application based on the example of global research
Rola i plonotwórcze efekty stosowania krzemu na przykładzie światowych badań

Urszula Sienkiewicz-Cholewa, e-mail: u.sienkiewicz@iung.wroclaw.pl

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska

Aleksandra Zajączkowska, e-mail: a.zajaczkowska@iung.wroclaw.pl

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska
Streszczenie

Silicon (Si) is not assigned to the group of components necessary for plants, yet studies proved that it affects plant growth and yield positively. Silicon is abundant in soils, but for plants it is available as unstable orthosilicate acid H4SiO4. Plants with the highest demand for silicon include monocotyledonous species (rice, sugarcane, wheat) which uptake it through an active transport and accumulate it at the level > 1% Si in dry matter. Silicon has been applied to soil and plants in the production of crops worldwide for many years. Low and very low levels of available silicon has been found in tropical soils and the plants grown under this climate positively responded to fertilization with Si (increase in crop yields has been observed). Beneficial activity of Si is especially pronounced at biotic (diseases and insects) and abiotic (drought and salinity) stress. The results of the most recent studies proved that inclusion of Si into fertilization programme is also reasonable in the countries with a temperate climate. The article presents forms of application and yield-forming effects of silicon in the selected crop species.

 

Krzem (Si) nie należy do składników niezbędnych dla roślin, ale coraz więcej danych literaturowych podaje, że może wpływać korzystnie na wzrost i plonowanie roślin. Pierwiastek ten występuje w glebach w bardzo dużej ilości, ale dla roślin jest dostępny tylko w postaci niestabilnego kwasu ortokrzemowego H4SiO4. Największe zapotrzebowanie na krzem wykazują gatunki jednoliścienne (ryż, trzcina cukrowa, pszenica), które pobierają go za pomocą transportu aktywnego i akumulują w ilości > 1% Si w s.m. Na świecie krzem od wielu lat stosowany jest w produkcji roślinnej doglebowo i dolistnie. Niski i bardzo niski poziom krzemu dostępnego dla roślin wykazują gleby klimatu tropikalnego i subtropikalnego. Rośliny uprawiane w tym klimacie reagują na aplikację krzemu wzrostem plonów. Korzystne działanie Si jest szczególnie wyraźne w warunkach stresu biotycznego (choroby, szkodniki) i abiotycznego (stres suszy, stres solny). Wyniki najnowszych badań dowodzą, że włączenie krzemu do nawożenia ma uzasadnienie również w krajach o klimacie umiarkowanym. W pracy przedstawiono metody aplikacji i efekty plonotwórcze stosowania krzemu u wybranych roślin.

Słowa kluczowe

silicon; Si sources for plants; soil and foliar application; plant yielding; krzem; źródła Si dla roślin; aplikacja doglebowa i dolistna; plonowanie roślin

Referencje

Ahmad A., Afzal M., Ahmad A.U.H., Tahir M. 2013. Effect of foliar application of silicon on yield and quality of rice (Oryza sativa L). Cercetari Agronomice in Moldova 46 (3): 21–28. DOI: 10.2478/v10298-012-0089-3

 

Artyszak A., Gozdowski D., Kucińska K. 2015.The effect of silicon foliar fertilization in sugar beet – Beta vulgaris (L.) ssp. vulgaris conv. crassa (Alef.) prov. altissima (Döll). Turkish Journal of Field Crops 20 (1): 115–119. DOI: 10.17557/.90799

 

Artyszak A., Gozdowski D., Kucińska K. 2016. Effect of foliar fertilization with silicon on the chosen physiological features and yield ofsugar beet. [Wpływ dokarmiania dolistnego krzemem na wybrane cechy fizjologiczne i plonowanie buraka cukrowego]. Fragmenta Agronomica 33 (2): 7–14.

 

Bocharnikova E.A., Loginov S.V., Matychenkov V.V., Storozhenko P.A. 2010. Silicon fertilizer efficiency. Russian Agricultural Science 36: 446–448. DOI: 10.3103/S1068367410060157

 

Brogowski Z. 2000. Krzem w glebie i jego rola w żywieniu roślin. Postępy Nauk Rolniczych 47 (6): 9–16.

 

Chagas R.C.S., Muraoka T., Korndörfer G.H., Camargo M.S. 2016. Silicon fertilization improve yield and quality of rice and pearl millet in cerrado soils. Bioscience Journal 32 (4): 899–907. DOI: 10.14393/BJ-v32n4a2016-32792

 

Epstein E., Bloom A.J. 2005. Mineral Nutrition of Plants: Principles and Perspectives. Second edition. Sinauer Associates is an imprint of Oxford University Press, 380 ss. ISBN 978-0878931729.

 

Farooq M.A., Dietz K.J. 2015. Silicon as versatile player in plant and human biology: overlooked and poorly understood. Frontiers in Plant Science 6: 994. DOI: 10.3389/fpls.2015.00994

 

Freitas L.B., Coelho E.M., Maia S.C.M., Silva T.R.B. 2011. Foliar fertilization with silicon in maize. Revista Ceres 58 (2): 262–267.

 

Gao X., Zou C., Wang L., Zhang F. 2004. Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition 27 (8): 1457–1470. DOI: 10.1081/PLN-200025865

 

Gao X., Zou C., Wang L., Zhang F. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition 29 (9): 1637–1647. DOI: 10.1080/01904160600851494

 

Guével M.-H., Menzies J.G., Bélanger R.R. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. European Journal of Plant Pathology 119 (4): 429–436. DOI: 10.1007/s10658-007-9181-1

 

Heckman J. 2013. Silicon: a beneficial substance. Better Crops with Plant Food 97 (4): 14–16.

 

Hodson M.J., White P.J., Mead A., Broadley M.R. 2005. Phylogenetic variation in the silicon composition of plants. Annals of Botany 96 (6): 1027–1046. DOI: 10.1093/aob/mci255

 

Knight C.T.G., Kinrade S.D. 2001. A primer on the aqueous chemistry of silicon. s. 57–84. W: Silicon in Agriculture (L.E. Datnoff, G.H. Snyder, G.H. Korndörfer, red.). Elsevier Science, Amsterdam, 42 ss. ISBN 9780444502629.

 

Kowalska J., Tyburski J., Jakubowska M., Krzymińska J. 2020. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon: 1–7. DOI: 10.1007/s12633-020-00414-4

 

Laane H.M. 2011. Foliar silicic acid technology for plants. Proceedings of the 5th International Conference on Silicon in Agriculture. Beijing, China, September 13–18, 2011: 99–100.

 

Laane H.M. 2018. The effects of foliar sprays with different silicon compounds. Plants 7 (2): 45. DOI: 10.3390/plants7020045

 

Liang Y., Wong J.W.C., Wei L. 2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58 (4): 475–483. DOI: 10.1016/j.chemosphere.2004.09.034

 

Lumsdon D.G., Farmer V.C. 1995. Solubility characteristics of proto‐imogolite sols: how silicic acid can de‐toxify aluminium solutions. Soil Science 46 (2): 179–186. DOI: 10.1111/j.1365-2389.1995.tb01825.x

 

Ma J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science Plant Nutrition 50 (1): 11–18. DOI: 10.1080/00380768.2004.10408447

 

Ma J.F., Mitani N., Nagao S., Konishi S., Tamai K., Iwashita T., Yano M. 2004. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology 136 (2): 3284–3289. DOI: 10.1104/pp.104.047365

 

Marchesan E., Villa S.C.C., Marzari V., Korndorfer G.H., Santos M. 2004. Silicon application on flooded rice in production components. Bioscience Journal 20 (3): 125–131.

 

Matichencov V.V., Bocharnikova E.A. 2001. The relationship between silicon and soil physical and chemical properties. s. 209–219. W: Silicon in Agriculture (L.E. Datnoff, G.H. Snyder, G.H. Korndörfer, red.). Elsevier Science, Amsterdam, 42 ss. ISBN 9780444502629.

 

Matichenkov V.V., Calvert D.V. 2002. Silicon as a beneficial element for sugarcane. Journal American Society of Sugarcane Technologists 22: 21–30.

 

Mustafa M.A., Metwallyl S.M., Ibrahim M.A. 2016. Assessing the effect of silicon fertilization on the productivity of maize (Zea mays L.) grown in a clay sodic soil. Zagazig Journal of Agriculture Research 43 (5): 1561–1569. DOI: 10.21608/zjar.2016.98106

 

Othman A., Ayed S., Bezzin O., Farooq M., Ayed-Slama O., Slim-Amara H., Younes M.B. 2020. Effect of silicon supply methods on durum wheat (Triticum durum Desf.) response to drought stress. Silicon: 1–11. DOI: 10.1007/s12633-020-00639-3

 

Pati S., Pal B., Badole S., Hazra G.C., Mandal B. 2016. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Communications in Soil Science and Plant Analysis 47 (3): 284–290. DOI: 10.1080/00103624.2015.1122797

 

Provance-Bowley M.C., Heckman J.R., Durner E.F. 2010. Calcium silicate suppresses powdery mildew and increases yield of field grown wheat. Soil Science Society of America Journal 74 (5): 1652–1661. DOI: 10.2136/sssaj2010.0134

 

Sahebi M., Hanafi M.M., Akmar A.S.N., Rafii M.Y., Azizi P., Tengoua F.F., Azwa J.N.M., Shabanimofrad M. 2015. Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International, Volume 2015, Article ID 396010, 16 ss. DOI: 10.1155/2015/396010

 

Sandhya K., Prakash N.B., Meunier J.D. 2018. Diatomaceous earth as source of silicon on the growth and yield of rice in contrasted soils of Southern India. Journal of Soil Science and Plant Nutrition 18 (2): 344–360. DOI: 10.4067/S0718-95162018005001201

 

Seebold K.W., Datnoff L.E., Correa-Victoria F.J., Kucharek T.A., Snyder G.H. 2000. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Disease 84 (8): 871–876. DOI: 10.1094/PDIS.2000.84.8.871

 

Segalin S.R., Huth C., D´Avila Rosa T., Pahins D.B. 2012. Foliar application of silicon and the effect on wheat seed yield and quality. Journal of Seed Science 35 (1): 86–91. DOI: 10.1590/S2317-15372013000100012

 

Sommer M., Kaczorek D., Kuzyakov Y., Breuer J. 2006. Silicon pools and fluxes in soils and landscapes – a review. Journal of Plant Nutrition and Soil Science 169 (3): 310–329. DOI: 10.1002/jpln.200521981

 

Suriyaprabha R., Karunakaran G., Yuvakkumar R., Rajendran V., Kannan N. 2014. Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Journal Synthesis and Reactivity in Inorganic and Nano-Metal Chemistry 44 (8): 1128–1131. DOI: 10.1080/15533174.2013.799197

 

Tavakkoli E., Lyons G., English P., Guppy C.N. 2011. Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilization. Journal of Plant Nutrition and Soil Science 174 (3): 437–446. DOI: 10.1002/jpln.201000023

 

Tubana B.S., Babu T., Datnoff L.E. 2016. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Science 181 (9/10): 393–411. DOI: 10.1097/SS.0000000000000179

 

Progress in Plant Protection (2020) 60: 313-319
Data pierwszej publikacji on-line: 2020-11-06 12:55:27
http://dx.doi.org/10.14199/ppp-2020-034
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy