Progress in Plant Protection

Wpływ procesów technologicznych na poziomy stężeń naturalnych i syntetycznych substancji toksycznych występujących w roślinach rolniczych i ich produktach oraz metody oznaczania toksyn
The influence of technological processing on the concentration levels of natural and synthetic toxic substances present in agricultural plants and their products and determination methods of toxins

Magdalena Jankowska, e-mail: m.jankowska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska

Bożena Łozowicka, e-mail: B.Lozowicka@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska
Streszczenie

Naturalne i syntetyczne substancje toksyczne występujące w roślinach rolniczych i ich produktach mogą stanowić ryzyko narażenia zdrowia ludzi i zwierząt. Obecność niepożądanych związków, takich jak alkaloidy, mykotoksyny czy pozostałości środków ochrony roślin (ś.o.r.) stwarza potrzebę poszukiwania metod oznaczania wymagających intensywnego przygotowania i oczyszczania próbek w celu oddzielenia analitów od matrycy, jak również opracowania skutecznych strategii eliminacji substancji celem zapewnienia bezpieczeństwa żywności. Procesy technologiczne są efektywnym narzędziem wpływającym na zmianę poziomu stężeń substancji toksycznych, zarówno toksyn naturalnego pochodzenia (alkaloidy, mykotoksyny), jak i będących wynikiem zanieczyszczenia roślin rolniczych pozostałościami ś.o.r. W przemyśle przetwórczym wykorzystuje się szereg metod fizycznych, chemicznych i biologicznych lub ich kombinacji, skutecznych w usuwaniu, przekształcaniu, detoksyfikacji i dekontaminacji toksycznych substancji występujących w roślinach. W pracy podsumowano metody przetwarzania roślin rolniczych oraz metody oznaczania substancji toksycznych opublikowane w ciągu ostatnich lat. Omówiono wpływ metod biologicznych, chemicznych i fizycznych na poziomy stężeń alkaloidów, mykotoksyn i pozostałości ś.o.r. w roślinach rolniczych i ich produktach.

 

Natural and synthetic toxic substances occurring in agricultural plants and their products may pose a risk to human and animal health. The presence of undesirable compounds such as alkaloids, mycotoxins and pesticide residues creates a necessity to search for determination methods requiring extensive sample preparation and clean-up to separate analytes from the matrix and also effective removal strategies to ensure food safety. Technological processing is one of the effective tools affecting the level of toxic substance, both regarding toxins of natural origin (alkaloids, mycotoxins) and the result of contaminating agricultural plants by residues of plant protection products. The processing industry uses a range of physical, chemical and biological methods, or their combinations, effective in removing, transforming, detoxifying and decontaminating toxic substances found in plants. The paper summarizes the processing methods of agricultural plants and determination methods of toxic substances published in recent years. It discusses the biological, chemical and physical methods on concentration levels of alkaloids, mycotoxins and pesticide residues in agricultural plants and their products.

Słowa kluczowe
pozostałości środków ochrony roślin; mykotoksyny; alkaloidy; substancje toksyczne; procesy technologiczne; pesticide residues; mycotoxins; alkaloids; toxic substances; technological processing
Referencje

Adebo O.A., Njobeh P.B., Gbashi S., Nwinyi O.C., Mavumengwana V. 2015. Review on microbial degradation of aflatoxins. Critical Reviews in Food Science and Nutrition 57 (15): 3208–3217. DOI: 10.1080/10408398.2015.1106440

 

Bonnechère A., Hanot V., Jolie R., Hendrickx M., Bragard C., Bedoret T., van Loco J. 2012a. Processing factors of several pesticides and degradation products in carrots by household and industrial processing. Journal of Food Research 1 (3): 68–83. DOI: 10.5539/jfr.v1n3p68

 

Bonnechère A., Hanot V., Jolie R., Hendrickx M., Bragard C., Bedoret T., van Loco J. 2012b. Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control 25 (1): 397–406. DOI: 10.1016/j.foodcont.2011.11.010

 

Boruch M., Król B. 1993. Procesy technologiczne żywności. Skrypty dla szkół wyższych (K. Jabłonowski, red.). Wydawnictwo Politechniki Łódzkiej, Łódź, 254 ss. http://cybra.lodz.pl/Content/418/Procesy_technologii_zywnosci.pdf

 

Bryła M., Ksieniewicz-Woźniak E., Waśkiewicz A., Podolska G., Szymczyk K. 2019. Stability of ergot alkaloids during the process of baking rye bread. LWT-Food Science and Technology 110: 269–274. DOI: 10.1016/j.lwt.2019.04.065

 

Camara M.A., Cermeño S., Martínez G., Oliva J. 2020. Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chemistry 325: 126936. DOI: 10.1016/j.foodchem.2020.126936

 

Cano‐Sancho G., Sanchis V., Ramos A.J., Marin S. 2013. Effect of food processing on exposure assessment studies with mycotoxins. Food Additives and Contaminants A 30 (5): 867–875. DOI: 10.1080/19440049.2013.793824

 

Chilaka C.A., De Boevre M., Atanda O.O., De Saeger S. 2019. Fate of Fusarium mycotoxins during processing of Nigerian traditional infant foods (ogi and soybean powder). Food Research International 116: 408–418. DOI: 10.1016/j.foodres.2018.08.055

 

Duarte S.C., Pena A., Lino C.M. 2010. A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiology 27 (2): 187–198. DOI: 10.1016/j.fm.2009.11.016

 

EFSA Journal 2020. The 2018 European Union report on pesticide residues in food. EFSA Journal 18 (4): 6057. DOI: 10.2903/j.efsa.2020.6057

 

European Standard EN 15662:2018. Foods of plant origin - Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE - Modular QuEChERS-method.

 

Fernandez-Cruz M.L., Mansilla M.L., Tadeo J.L. 2010. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. Journal of Advanced Research 1 (2): 113–122. DOI: 10.1016/j.jare.2010.03.002

 

Gabler F.M., Smilanick J.L., Mansour M.F., Karaca H. 2010. Influence of fumigation with high concentrations of ozone gas on postharvest graymold and fungicide residues on table grapes. Postharvest Biology and Technology 55 (2): 85–90. DOI: 10.1016/j.postharvbio.2009.09.004

 

Guldiken B., Ozkan G., Catalkaya G., Ceylan F.D., Ekin Yalcinkaya I., Capanoglu E. 2018. Phytochemicals of herbs and spices: Health versus toxicological effects. Food and Chemical Toxicology 119: 37–49. DOI: 10.1016/j.fct.2018.05.050

 

Han Y., Xu J., Dong F., Li W., Liu X., Li Y., Kong Z., Zhu Y., Liu N., Zheng Y. 2013. The fate of spirotetramat and its metabolite spirotetramat-enol in apple samples during apple cider processing. Food Control 34 (2): 283–290. DOI: 10.1016/j.foodcont.2013.05.009

 

Holland P.T., Hamilton D., Ohlin B., Skidmore M.W. 1994. Effects of storage and processing on pesticide residues in plant products. Pure & Applied Chemistry 66 (2): 335–356. DOI: 10.1351/pac199466020335

 

Hrynko I., Łozowicka B., Kaczyński P. 2019. Comprehensive analysis of insecticides in melliferous weeds and agricultural crops using a modified QuEChERS/LC-MS/MS protocol and of their potential risk to honey bees (Apis mellifera L.). Science of the Total Environment 657: 16–27. DOI: 10.1016/j.scitotenv.2018.11.470

 

Ikeura H., Kobayashi F., Tamaki M. 2011. Removal of residual pesticides in vegetables using ozone microbubbles. Journal of Hazardous Materials 186 (1): 956–959. DOI: 10.1016/j.jhazmat.2010.11.094

 

Ioi J.D., Zhou T., Tsao R., Marcone M.F. 2017. Mitigation of patulin in fresh and processed foods and beverages. Toxins (Basel) 9 (5): 157. DOI: 10.3390/toxins9050157

 

Jankowska M., Kaczyński P., Łozowicka B. 2020. Metabolic profile and behavior of clethodim and spirotetramat in herbs during plant growth and processing under controlled conditions. Scientific Reports 10 (1): 1323. DOI: 10.1038/s41598-020-58130-3

 

Jankowska M., Łozowicka B., Kaczyński P. 2019. Comprehensive toxicological study over 160 processing factors of pesticides in selected fruit and vegetables after water, mechanical and thermal processing treatments and their application to human health risk assessment. Science of the Total Environment 652: 1156–1167. DOI: 10.1016/j.scitotenv.2018.10.324

 

Kaczyński P., Łozowicka B. 2020. A novel approach for fast and simple determination pyrrolizidine alkaloids in herbs by ultrasoundassisted dispersive solid phase extraction method coupled to liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 187: 113351. DOI: 10.1016/j.jpba.2020.113351

 

Karlovsky P., Suman M., Berthiller F., De Meester J., Eisenbrand G., Perrin I., Oswald I.P., Speijers G., Chiodini A., Recker T., Dussort P. 2016. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research 32: 179–205. DOI: 10.1007/s12550-016-0257-7

 

Kaushik G. 2015. Effect of processing on mycotoxin content in grains. Critical Reviews in Food Science and Nutrition 55 (12): 1672–1683. DOI: 10.1080/10408398.2012.701254

 

Kaushik G., Satya S., Naik S.N. 2009. Food processing a tool to pesticide residue dissipation – a review. Food Research International 42 (1): 26–40. DOI: 10.1016/j.foodres.2008.09.009

 

Keikotlhaile B.M., Spanoghe P., Steurbaut W. 2010. Effects of food processing on pesticide residue in fruits and vegetables: A metaanalysis approach. Food and Chemical Toxicology 48 (1): 1–6. DOI: 10.1016/j.fct.2009.10.031

 

Kumari B. 2008. Effects of household processing on reduction of pesticide residues in vegetables. Journal of Agricultural and Biological Science 3 (4): 46–51.

 

Liang Y., Wang W., Shen Y., Liu Y., Liu X.J. 2012. Effects of home preparation on organophosphorus pesticide residues in raw cucumber. Food Chemistry 133 (3): 636–640. DOI: 10.1016/j.foodchem.2012.01.016

 

Liu M., Cao Y., Lv D., Zhang W., Zhu Z., Zhang H., Chai Y. 2017. Effect of processing on the alkaloids in Aconitum tubers by HPLC-TOF/MS. Journal of Pharmaceutical Analysis 7 (3): 170–175. DOI: 10.1016/j.jpha.2017.01.001

 

Loi M., Fanelli F., Liuzzi V., Logrieco A., Mulè G. 2017. Mycotoxin biotransformation by native and commercial enzymes: present and future perspectives. Toxins 9 (4): 111. DOI: 10.3390/toxins9040111

 

Ludwicki J.K., Czaja K., Góralczyk K., Stuciński P. 2011. Probabilistyczna i deterministyczna ocena ryzyka w bezpieczeństwie żywności. [Probabilistic and deterministic risk assessment in food safety] (J.K. Ludwicki, red.). Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny, Warszawa.

 

Łozowicka B., Ilyasova G., Kaczyński P., Jankowska M., Rutkowska E., Hrynko I., Mojsak P., Szabuńko J. 2016a. Multi-residue methods for the determination of over four hundred pesticides in solid and liquid high sucrose content matrices by tandem mass spectrometry coupled with gas and liquid chromatograph. Talanta 151: 51–61. DOI: 10.1016/j.talanta.2016.01.020

 

Łozowicka B., Jankowska M., Hrynko I., Kaczyński P. 2016b. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment 188 (1): 51. DOI: 10.1007/s10661-015-4850-6

 

Łozowicka B., Jankowska M., Kaczyński P. 2016c. The behavior of selected pesticide residues in blackcurrants during technological processing monitored by LC/MS/MS. Chemical Papers 70 (5): 545–555. DOI: 10.1515/chempap-2015-0244

 

Łozowicka B., Jankowska M., Rutkowska E. 2016d. Investigations on fungicide removal from broccoli by various processing methods. Desalination and Water Treatment 57 (3): 1564–1572. DOI: 10.1080/19443994.2014.988408

 

Marin-Sáez J., Romero-González R., Garrido Frenich A. 2019. Effect of tea making and boiling processes on the degradation of tropane alkaloids in tea and pasta samples contaminated with Solanaceae seeds and coca leaf. Food Chemistry 287: 265–272. DOI: 10.1016/j.foodchem.2019.02.091

 

Milani J., Maleki G. 2014. Effects of processing on mycotoxin stability in cereals. Journal of Science and Food Agriculture 94 (12): 2372–2375. DOI: 10.1002/jsfa.6600

 

Misra N.N. 2015. The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends in Food Science and Technology 45 (2): 229–244. DOI: 10.1016/j.tifs.2015.06.005

 

Mohammed M.A., Mohamed E.A., Yagoub A.E.A., Mohamed A.R., Babiker E.E. 2017. Effect of processing methods on alkaloids, phytate, phenolics, antioxidants. Activity and minerals of newly developed lupin (Lupinus albus L.) cultivar. Journal of Food Processing and Preservation 41 (1): e12960. DOI: 10.1111/jfpp.12960

 

Namieśnik J. 2003. Trendy w analityce i monitoringu środowiskowym. s. 1–32. W: Nowe horyzonty i wyzwania w analityce i monitoringu środowiskowym (J. Namieśnik, W. Chrzanowski, P. Szpinek, red.). Centrum Doskonałości Analityki i Monitoringu Środowiskowego, Gdańsk, 776 ss. ISBN 83-919081-1-9. http://www.pg.gda.pl/chem/CEEAM/Dokumenty/CEEAM_ksiazka_polska/Rozdzialy/rozdzial_001.pdf

 

Narenderan S.T., Meyyanathan S.N., Babu B. 2020. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Research International 133: 109141. DOI: 10.1016/j.foodres.2020.109141

 

Ng S.W., Ching C.K., Chan A.Y., Mak T.W. 2013. Simultaneous detection of 22 toxic plant alkaloids (aconitum alkaloids, solanaceous tropane alkaloids, sophora alkaloids, strychnos alkaloids and colchicine) in human urine and herbal samples using liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 942–943: 63–69. DOI: 10.1016/j.jchromb.2013.10.020

 

Pandiselvam R., Kaavya R., Jayanath Y., Veenuttranon K., Lueprasitsakul P., Divya V., Kothakota A., Ramesh S.V. 2020. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods – a review. Trends in Food Science and Technology 97: 38–54. DOI: 10.1016/j.jchromb.2013.10.020

 

Park S.H., Lamsal B.P., Balasubramaniam V.M. 2008. Principles of food processing. Chapter 1. s. 1–15. W: Food Processing: Principles and Applications. Second edition (S. Clark, S. Jung, B. Lamsal, red.). John Wiley & Sons, 578 ss. ISBN 978-047-067-11-46. DOI: 10.1002/9781118846315.ch1

 

Picron J.-F., Herman M., Van Hoeck E., Goscinny S. 2018. Analytical strategies for the determination of pyrrolizidine alkaloids in plant based food and examination of the transfer rate during the infusion process. Food Chemistry 266: 514–523. DOI: 10.1016/j.foodchem.2018.06.055

 

Piotrowska M. 2012. Wykorzystanie mikroorganizmów do usuwania mikotoksyn z żywności i pasz. [Using of microorganisms for mycotoxin removal from food and feed]. Postępy Mikrobiologii 51 (2): 109–119.

 

Roknul Azam S.M., Ma H., Xu B., Devi S., Siddique M.A.B., Stanley S.L., Bhandari B., Zhu J. 2020. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends in Food Science and Technology 97: 417–432. DOI: 10.1016/j.tifs.2020.01.028

 

Samsidar A., Siddiqueea S., Shaarani S.M. 2018. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends in Food Science and Technology 71: 188–201. DOI: 10.1016/j.tifs.2017.11.011

 

SANTE 2019. Document No. SANTE/12682/2019. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf

 

Schaarschmidt S., Fauhl-Hassek C. 2019. Mycotoxins during the processes of nixtamalization and tortilla production. Toxins 11 (4): 227. DOI: 10.3390/toxins11040227

 

Scholz R. 2018. European database of processing factors for pesticides. EFSA supporting publication 2018:EN-1510, 50 ss. DOI: 10.2903/sp.efsa.2018.EN-1510

 

Shetty P.H., Jespersen L. 2006. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science and Technology 17 (2): 48–55. DOI: 10.1016/j.tifs.2005.10.004

 

Szczepaniak W. 2017. Metody instrumentalne w analizie chemicznej. Państwowe Wydawnictwo Naukowe, Warszawa, 207 ss.

 

Tamaki M., Ikeura H. 2012. Removal of residual pesticides in vegetables using ozone microbubbles. Chapter 5. s. 85–100. W: Pesticides: Recent Trends in Pesticide Residue Assay (R.P. Soundararajan, red.). InTech, Rijeka, Croatia. ISBN 978-953-51-0681-4. DOI: 10.5772/48744

 

Tekile A., Kim I., Lee J.-Y. 2017. Applications of ozone micro- and nanobubble technologies in water and wastewater treatment: review. Journal of the Korean Society of Water and Wastewater 31 (6): 481–490. DOI: 10.11001/jksww.2017.31.6.481

 

Tibola C.S., Fernandes J.M.C., Guarienti E.M. 2016. Effect of cleaning, sorting and milling processes in wheat mycotoxin content. Food Control 60: 174–179. DOI: 10.1016/j.foodcont.2015.07.031

 

Timme G., Walz-Tylla B. 2004. Effects of food preparation and processing on pesticide residues in commodities of plant origin. Chapter 4. s. 121–148. W: Pesticide Residues in Food and Drinking Water: Human Exposure and Risks (D. Hamilton, S. Crossley, red.). John Wiley & Sons, 363 ss. ISBN 978-047-148-99-17. DOI: 10.1002/0470091614.ch4

 

Trojanowicz M. 2013. Challenges of modern analytical chemistry. Modern Chemistry and Applications Journal 1 (4): 113. DOI: 10.4172/2329-6798.1000e113

 

Yang Y., Li G., Wu D., Liu J., Li X., Luo P., Hu N., Wang H., Wu Y. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science and Technology 96: 233–252. DOI: 10.1016/j.tifs.2019.12.021

 

Zhang C., Chen J., Zhang J., Wei S., Ji H., Wu X., Ma W., Chen J. 2018a. Different processing methods change the oral toxicity induced by Sophora alopecuroides seeds and the contents of five main toxic alkaloids from the ethanol extracts determined by a validated UHPLC-MS/MS assay. Revista Brasileira de Farmacognosia 28 (4): 481–488. DOI: 10.1016/j.bjp.2018.04.007

 

Zhang L., Dou X.W., Zhang C., Logrieco A.F., Yang M.H. 2018b. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins (Basel) 10 (2): 65. DOI: 10.3390/toxins10020065

 

Zhao M.A., Feng Y.N., Zhu Y.Z., Kim J.H. 2014. Multi-residue method for determination of 238 pesticides in chinese cabbage and cucumber by liquid chromatography-andem mass spectrometry: comparison of different purification procedures. Journal of Agricultural and Food Chemistry 62 (47): 11449–11456. DOI: 10.1021/jf504570b

Progress in Plant Protection (2021) 61: 40-52
Data pierwszej publikacji on-line: 2021-03-05 12:03:23
http://dx.doi.org/10.14199/ppp-2021-005
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy