Progress in Plant Protection

Optymalizacja metod oznaczania 7 neonikotynoidów w pszczołach, miodach, dziko rosnących roślinach miododajnych i cieczach gutacyjnych
Optimization of the methods for the determination of 7 neonicotinoids in honey bees, honeys, melliferous weeds and guttation fluids

Izabela Hrynko, e-mail: i.hrynko@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Białymstoku, Chełmońskiego 22, 15-195 Białystok, Polska
Streszczenie

W pracy przedstawiono pionierskie badania jednoczesnego oznaczania 7 neonikotynoidów (acetamipryd, chlotianidyna, dinotefuran, imidachlopryd, nitenpyram, tiachlopryd, tiametoksam) w próbkach pszczół, miodu, cieczy gutacyjnej i dziko rosnących roślin miododajnych. W przypadku każdej matrycy zastosowano indywidualne podejście poddając optymalizacji: masę naważki analitycznej, rodzaj rozpuszczalnika ekstrahującego oraz skład sorbentów do oczyszczania. Zastosowanie unikalnych sorbentów do oczyszczania ekstraktów pozwoliło na usunięcie z próbki niepożądanych substancji interferujących, takich jak woski pszczele, lipidy, białka, aminokwasy, cukry, czy hormony roślinne. Identyfikacja analitów oraz ich analiza ilościowa została przeprowadzona techniką chromatografii cieczowej sprzężonej z tandemową spektrometrią mas. Średnie odzyski analizowanych związków mieściły się w akceptowalnych granicach 70–120% z względnym odchyleniem standardowym (RSD) ≤ 20%, poza kilkoma wyjątkami. Opracowane i zwalidowane metody pozwolą wyjaśnić szereg kwestii dotyczących potencjalnie negatywnego wpływu neonikotynoidów na zdrowie pszczół.

 

The present study discusses the pioneering research of simultaneous determination of 7 neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam) in honey bees, honey, guttation fluid and melliferous weeds samples. An individual approach was applied for each matrix, optimizing: the mass of the analytical sample, the kind of extraction solvent, and the composition of purification sorbents. Application of unique sorbents for purification of extracts enabled removal of interfering substances (i.e. beeswax, lipids, proteins, amino acids, sugars, and plant hormones) from the sample. The identification of analytes and their quantitative analysis has been performed through liquid chromatography with tandem mass spectrometry. Average recoveries of the compounds under analysis fell within the acceptable range of 70–120%, with relative standard deviation (RSD) ≤ 20%, except several substances. Developed and validated methods will enable explanation of a number of issues concerning the potential adverse impact of neonicotinoids on honey bee health.

Słowa kluczowe
neonikotynoidy; pszczoły; produkty pszczele; optymalizacja; sorbent do oczyszczania; neonicotinoids; honey bees; bee products; optimization; clean-up sorbent
Referencje

Allgaier M., Halder J.M., Kittelberger J., Hauer B., Nebel B.A. 2019. A simple and robust LC-ESI single quadrupole MS-based method to analyze neonicotinoids in honey bee extracts. MethodsX 6: 2484–2491. DOI: 10.1016/j.mex.2019.09.038

 

Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive soildphase extraction for the determination of pesticide residues in produce. Journal of AOAC International 86 (2): 412–431. DOI: 10.1093/jaoac/86.2.412

 

Arias J.L.O., Rombaldi C., Caldas S.S., Primel E.G. 2014. Alternative sorbents for the dispersive solid-phase extraction step in quick, easy, cheap, effective, rugged and safe method for extraction of pesticides from rice paddy soils with determination by liquid chromatography tandem mass spectrometry. Journal of Chromatography A 1360: 66–75. DOI: 10.1016/j.chroma.2014.07.082

 

Bass C., Denholm I., Williamson M.S., Nauen R. 2015. The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology 121: 78–87. DOI: 10.1016/j.pestbp.2015.04.004

 

Borsuah J.F., Messer T.L., Snow D.D., Comfort S.D., Mittelstet A.R. 2020. Literature review: global neonicotinoid insecticide occurrence in Aquatic Environments. Water 12 (12): 3388. DOI: 10.3390/w12123388

 

Codling G., Al Naggar Y., Giesy J.P., Robertson A.J. 2016. Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere 144: 2321–2328. DOI: 10.1016/j. chemosphere.2015.10.135

 

Daniele G., Giroud B., Jabot C., Vulliet E. 2018. Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS. Environmental Science and Pollution Research 25: 6145–6153. DOI: 10.1007/s11356-017-9227-7

 

Dulin F., Halm-Lemeille M.P., Lozano S., Lepailleur A., Sopkova-de Oliveira Santos J., Rault S., Bureau R. 2013. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 11 (7): 3295. DOI: 10.2903/j.efsa.2013.3295

 

EFSA (European Food Safety Authority) 2012. Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe. EFSA Journal 10 (6): 2752. DOI: 10.2903/j. efsa.2012.2752

 

García-Valcárcel A.I., Martínez-Ferrer M.T., Campos-Rivela J.M., Hernando Guil M.D. 2019. Analysis of pesticide residues in honeybee (Apis mellifera L.) and in corbicular pollen. Exposure in citrus orchard with an integrated pest management system. Talanta 204: 153–162. DOI: 10.1016/j.talanta.2019.05.106

 

Gbylik-Sikorska M., Sniegocki T., Posyniak A. 2015. Determination of neonicotinoid insecticides and their metabolites inhoney bee and honey by liquid chromatography tandem mass spectrometry. Journal of Chromatography B 990: 132–140. DOI: 10.1016/j.jchromb.2015.03.016

 

Goulson D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50 (4): 977–987. DOI: 10.1111/1365-2664.12111

 

Han L., Matarrita J., Sapozhnikova Y., Lehotay S.J. 2016. Evaluation of a recent product to remove lipids and other matrix coextractives in the analysis of pesticide residues and environmental contaminants in foods. Journal of Chromatography A 1449: 17–29. DOI: 10.1016/j.chroma.2016.04.052

 

Hrynko I., Łozowicka B., Kaczyński P. 2018. Liquid chromatographic MS/MS analysis of a large group of insecticides in honey by modified QuEChERS. Food Analytical Methods 11: 2307–2319. DOI: 10.1007/s12161-018-1208-z

 

Jankowska M., Łozowicka B. 2021. Naturalne i syntetyczne substancje toksyczne występujące w roślinach rolniczych i ich produktach. [Natural and synthetic toxic substances occurring in agricultural plants and their products]. Progress in Plant Protection 61 (1). DOI: 10.14199/ppp-2021-003

 

Jeschke P., Nauen R., Schindler M., Elbert A. 2011. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry 59 (7): 2897–2908. DOI: 10.1021/jf101303g

 

Jovanov P., Guzsvány V., Lazić S., Franko M., Sakač M., Šarić L., Kos J. 2015. Development of HPLC-DAD method for determination of neonicotinoids in honey. Journal of Food Composition and Analysis 40: 106–113. DOI: 10.1016/j.jfca.2014.12.021

 

Kaczyński P., Hrynko I., Łozowicka B. 2017. Evolution of novel sorbents for effective clean-up of honeybee matrix in highly toxic insecticide LC/MS/MS analysis. Ecotoxicology and Environmental Safety 139: 124–131. DOI: 10.1016/j.ecoenv.2017.01.033

 

Kaczyński P., Hrynko I., Rutkowska E., Mojsak P., Szabuńko J., Łozowicka B. 2018. Optymalizacja wielopozostałościowej metody oznaczania pozostałości pestycydów w warzywach korzeniowych. [Optimization of the multiresidue method for the determination of pesticide residues in root vegetables]. Progress in Plant Protection 58 (1): 13–21. DOI: 10.14199/ppp-2018-001

 

Kanne D.B., Dick R.A., Tomizawa M., Casida J.E. 2005. Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chemical Research in Toxicology 18 (9): 1479–1484. DOI: 10.1021/tx050160u

 

Kasiotis K.M., Anagnostopoulos C., Anastasiadou P., Machera K. 2014. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Science of The Total Environment 485–486: 633–642. DOI: 10.1016/j.scitotenv.2014.03.042

 

Kiljanek T., Niewiadowska A., Gaweł M., Semeniuk S., Borzęcka M., Posyniak A., Pohorecka K. 2017. Multiple pesticide residues in live and poisoned honeybees – Preliminary exposure assessment. Chemosphere 175: 36–44. DOI: 10.1016/j.chemosphere.2017.02.028

 

Laaniste A., Leito I., Rebane R., Lõhmus R., Lõhmus A., Punga F., Kruve A. 2016. Determination of neonicotinoids in Estonian honey by liquid chromatography-electrospray mass spectrometry. Journal of Environmental Science and Health, Part B 51 (7): 455–464. DOI: 10.1080/03601234.2016.1159457

 

Lehotay S.J., Son K.A., Kwon H., Koesukwiwat U., Fu W., Mastovska K., Hoh E., Leepipatpiboon N. 2010. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A 1217 (16): 2548–2560. DOI: 10.1016/j.chroma.2010.01.044

 

Lu C., Chang C.H., Palmer C., Zhao M., Zhang Q. 2018. Neonicotinoid residues in fruits and vegetables: an integrated dietary exposure assessment approach. Environmental Science & Technology 52 (5): 3175–3184. DOI: 10.1021/acs.est.7b05596

 

Łozowicka B., Jankowska M., Rutkowska E., Lulewicz M., Kaczyński P., Konecki R., Iwaniuk P. 2019. Wpływ sorbentów „clean-up” na odzysk i efekt matrycy w wielopozostałościowej metodzie oznaczania pestycydów w winie. [Impact of „clean-up”sorbents on the recovery and the matrix effect in the multi-residue method for the determination of pesticides in wine]. Progress in Plant Protection 59 (4): 206–213. DOI: 10.14199/ppp-2019-027

 

Łozowicka B., Kaczyński P., Iwaniuk P. 2021. Analysis of 22 free amino acids in honey from Eastern Europe and Central Asia using LC-MS/MS technique without derivatization step. Journal of Food Composition and Analysis 98: 103837. DOI: 10.1016/j.jfca.2021.103837

 

PPDB 2019. Pesticide Properties Database. University of Hertfordshire, Anglia. https://sitem.herts.ac.uk/aeru/ppdb/en/ [dostęp: 24.02.2021].

 

Rutkowska E., Łozowicka B., Kaczyński P. 2019. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chemistry 279: 20–29. DOI:10.1016/j.foodchem.2018.11.130

 

SANTE/12682/2019. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed.

 

Tomizawa M., Casida J.E. 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annual Review of Pharmacology and Toxicology 45: 247–268. DOI: 10.1146/annurev.pharmtox.45.120403.095930

 

Valverde S., Ibáñez M., Bernal J.L., Nozal M.J., Hernández F., Bernal J. 2018. Development and validation of ultra high performance-liquid chromatography-tandem mass spectrometry based methods for the determination of neonicotinoid insecticides in honey. Food Chemistry 266: 215–222. DOI: 10.1016/j.foodchem.2018.06.004

 

www.gov.pl/web/rolnictwo/komunikat---nowe-terminy-na-sprzedaz-i-stosowanie-srodkow [dostęp: 24.02.2021].

Progress in Plant Protection (2021) : 0-0
Data pierwszej publikacji on-line: 2021-03-30 13:33:37
http://dx.doi.org/10.14199/ppp-2021-010
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy