Progress in Plant Protection

Sekwencjonowanie następnej generacji (NGS) jako uniwersalna metoda wykrywania i różnicowania wirusów roślinnych
Next generation sequencing (NGS) as a multipurpose method for detection and differentiation of plant viruses

Agata Kaczmarek, e-mail: a.kaczmarek@ihar.edu.pl

Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05-870 Błonie, Polska

Krzysztof Treder, e-mail: k.treder@ihar.edu.pl

Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05-870 Błonie, Polska
Streszczenie

Niniejsza praca opisuje wykorzystanie sekwencjonowania następnej generacji (NGS) w badaniach nad wirusami roślin. Pomimo iż, NGS nie jest jeszcze rutynowo stosowane, coraz częściej jest adaptowane w diagnostyce oraz genomice fitopatogenów. Techniki NGS umożliwiają jednoczesne wykrycie wielu wirusów obecnych w zakażonym materiale. Dzięki nim możliwe jest nie tylko stwierdzenie, jakie wirusy są obecne w jednej badanej próbie, ale również ich zróżnicowanie genetyczne. Jednoczesna identyfikacja wielu wirusów, możliwość wczesnego wykrywania ognisk choroby, śledzenie rozwoju epidemii oraz monitorowanie zmian genetycznych zachodzących w populacji patogenów wirusowych w trakcie rozwoju epidemii sprawiają, że NGS staje się uniwersalnym narzędziem badawczym umożliwiającym nie tylko detekcję, ale również zrozumienie mechanizmów molekularnych pozwalających wirusom adaptować się do zmian środowiskowych (genotypu rośliny – gospodarza, wektora, obecności innych patogenów).

 

This paper describes the application of next generation sequencing (NGS) in plant virus research. Although NGS has not been routinely used yet, it is increasingly adopted in diagnostics and genomics of phytopathogens. NGS technics enable the simultaneous detection of multiple viruses present in infected material. This makes it possible not only to determine which viruses are present in a single sample but also to determine their concentration and genetic diversity. The simultaneous identification of many viruses, the possibility of early detection of disease outbreaks as well as tracking and monitoring of epidemic development, make NGS a universal research tool that enables not only the detection but also the understanding of molecular mechanisms allowing viruses to adapt to environmental changes (host plant genotype, vector, presence of other pathogens).

Słowa kluczowe
diagnostyka; fitopatologia; NGS; sekwencjonowanie; wirusy roślin; diagnostics; plant pathology; sequencing; plant viruses
Referencje

Adams I., Fox A. 2016. Diagnosis of plant viruses using next-generation sequencing and metagenomic analysis. s. 323–335. W: Current Research Topics in Plant Virology (A. Wang, X. Zhou, red.). Springer, Cham. DOI: 10.1007/978-3-319-32919-2_14

 

Adams I.P., Glover R.H., Monger W.A., Mumford R., Jackeviciene E., Navalinskiene M., Samuitiene M., Boonham N. 2009. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Molecular Plant Pathology 10 (4): 537–545. DOI: 10.1111/j.1364-3703.2009.00545.x

 

Adams I.P., Skelton A., Macarthur R., Hodges T., Hinds H., Flint L., Nath P.D., Boonham N., Fox A. 2014. Carrot yellow leaf virus is associated with carrot internal necrosis. PLOS ONE 9: 109–125. DOI: 10.1371/journal.pone.0109125

 

Al Rwahnih M., Daubert S., Golino D., Rowhani A. 2009. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387 (2): 395–401. DOI: 10.1016/j.virol.2009.02.028

 

Atsumi G., Sekine K.T., Kobayashi K. 2015. A new method to isolate total dsRNA. s. 27–37. W: Plant Virology Protocols. Methods in Molecular Biology (Methods and Protocols), vol. 1236 (I. Uyeda, C. Masuta C., red.). Humana Press, New York, NY. DOI: 10.1007/978-1-4939-1743-3_3

 

Barba M., Czosnek H., Hadidi A. 2014. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6 (1): 106–136. DOI: 10.3390/v6010106

 

Bayley H. 2015. Nanopore sequencing: from imagination to reality. Clinical Chemistry 61 (1): 25–31. DOI: 10.1373/clinchem.2014.223016

 

Bayley H., Cremer P.S. 2001. Stochastic sensors inspired by biology. Nature 413: 226–230. DOI: 10.1038/35093038

 

Bronzato Badial A., Sherman D., Stone A., Gopakumar A., Wilson V., Schneider W., King J. 2018. Nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues. Plant Disease 102 (8): 1648–1652. DOI: 10.1094/PDIS-04-17-0488-RE

 

Della Bartola M., Byrne S., Mullins E. 2020. Characterization of potato virus Y isolates and assessment of nanopore sequencing to detect and genotype potato viruses. Viruses 12 (4): 478. DOI: 10.3390/v12040478

 

Dodds J.A., Morris T.J., Jordan R.L. 1984. Plant viral double-stranded RNA. Annual Review of Phytopathology 22: 151–168. DOI: 10.1146/annurev.py.22.090184.001055

 

Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., Bettman B., Bibillo A., Bjornson K., Chaudhuri B., Christians F., Cicero R., Clark S., Dalal R., deWinter A., Dixon J., Foquet M., Gaertner A., Hardenbol P., Heiner C., Hester K., Holden D., Kearns G., Kong X., Kuse R., Lacroix Y., Lin S., Lundquist P., Ma C., Marks P., Maxham M., Murphy D., Park I., Pham T., Phillips M., Roy J., Sebra R., Shen G., Sorenson J., Tomaney A., Travers K., Trulson M., Vieceli J., Wegener J., Wu D., Yang A., Zaccarin D., Zhao P., Zhong F., Korlach J., Turner S. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323 (5910): 133–138. DOI: 10.1126/science.1162986

 

Elbeaino T., Giampetruzzi A., De Stradis A., Digiaro M. 2014. Deep-sequencing analysis of an apricot tree with vein clearing symptoms reveals the presence of a novel betaflexivirus. Virus Research 181: 1–5. DOI: 10.1016/j.virusres.2013.12.030

 

Filloux D., Fernandez E., Loire E., Claude L., Galzi S., Candresse T., Winter S., Jeeva M., Makeshkumar T., Martin D.P. 2018. Nanopore-based detection and characterization of yam viruses. Scientific Reports 8: 17879. DOI: 10.1038/s41598-018-36042-7

 

Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. 1998. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391: 806–811. DOI: 10.1038/35888

 

Fox A., Adams I., Hany U., Hodges T., Forde S., Jackson L., Skelton A., Barton V. 2015. The application of next-generation sequencing for screening seeds for viruses and viroids. Seed Science and Technology 43 (3): 531–535. DOI: 10.15258/sst.2015.43.3.06

 

Goodwin S., McPherson J.D., McCombie W.R. 2016. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 17: 333–351. DOI: 10.1038/nrg.2016.49

 

Hamilton A.J., Baulcombe D.C. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286 (5441): 950–952. DOI: 10.1126/science.286.5441.950

 

Hwang Y.T., Kalischuk M., Fusaro A.F., Waterhouse P.M., Kawchuk L. 2013. Small RNA sequencing of Potato leafroll virusinfected plants reveals an additional subgenomic RNA encoding a sequence-specific RNA-binding protein. Virology 438 (2): 61–69. DOI: 10.1016/j.virol.2012.12.012

 

Jones S., Baizan-Edge A., MacFarlane S., Torrance L. 2017. Viral diagnostics in plants using next generation sequencing: computational analysis in practice. Frontiers in Plant Sciewnce 8: 1770. DOI: 10.3389/fpls.2017.01770

 

Kreuze J.F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., Simon R. 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 388 (1): 1–7. DOI: 10.1016/j.virol.2009.03.024

 

Kutnjak D., Rupar M., Gutierrez-Aguirre I., Curk T., Kreuze J.F., Ravnikar M. 2015. Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population. Journal of Virology 89 (9): 4760–4769. DOI: 10.1128/JVI.03685-14

 

Maliogka V., Minafra A., Saldarelli P., Ruiz-García A., Glasa M., Katis N., Olmos A. 2018. Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses 10 (8): 436. DOI: 10.3390/v10080436

 

Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., Berka J., Braverman M.S., Chen Y.-J., Chen Z., Dewell S.B., Du L., Fierro J.M., Gomes X.V., Godwin B.C., He W., Helgesen S., Ho C.H., Irzyk G.P., Jando S.C., Alenquer M.L.I., Jarvie T.P., Jirage K.B., Kim J.-B., Knight J.R., Lanza J.R., Leamon J.H., Lefkowitz S.M., Lei M., Li J., Lohman K.L., Lu H., Makhijani V.B., McDade K.E., McKenna M.P., Myers E.W., Nickerson E., Nobile J.R., Plant R., Puc B.P., Ronan M.T., Roth G.T., Sarkis G.J., Simons J.F., Simpson J.W., Srinivasan M., Tartaro K.R., Tomasz A., Vogt K.A., Volkmer G.A., Wang S.H., Wang Y., Weiner M.P., Yu P., Begley R.F., Rothberg J.M. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380. DOI: 10.1038/nature03959

 

Massart S., Chiumenti M., De Jonghe K., Glover R., Haegeman A., Koloniuk I., Komínek P., Kreuze J., Kutnjak D., Lotos L., Maclot F., Maliogka V., Maree H.J., Olivier T., Olmos A., Pooggin M.M., Reynard J.S., Ruiz-García A.B., Safarova D., Schneeberger P.H.H., Sela N., Turco S., Vainio E.J., Varallyay E., Verdin E., Westenberg M., Brostaux Y., Candresse T. 2019. Virus detection by high-throughput equencing of small RNAs: large-scale performance testing of sequence analysis strategies. Phytopathology 109 (3): 488–497. DOI: 10.1094/PHYTO-02-18-0067-R

 

Minicka J., Zarzyńska-Nowak A., Budzyńska D., Borodynko-Filas N., Hasiów-Jaroszewska B. 2020. High-throughput sequencing facilitates discovery of new plant viruses in Poland. Plants 9 (7): 820. DOI: 10.3390/plants9070820

 

Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. W: Cold Spring Harbor Symposia on Quantitative Biology 51: 263–273. DOI: 10.1101/SQB.1986.051.01.032

 

Noceń J., Puchta M., Czembor J.H. 2018. Wykorzystanie nowoczesnych technologii sekwencjonowania DNA (NGS) w bankach genów i hodowli roślin. Praca przeglądowa. [Using the next generation DNA sequencing (technology NGS) in gene banks and plant breeding. A review]. Agronomy Sciences 73 (1): 5–17. DOI: 10.24326/asx.2018.1.1

 

Okada R., Kiyota E., Moriyama H., Fukuhara T., Natsuaki T. 2015. A simple and rapid method to purify viral dsRNA from plant and fungal tissue. Journal of General Plant Pathology 81: 103–107. DOI: 10.1007/s10327-014-0575-6

 

Pecman A., Kutnjak D., Gutiérrez-Aguirre I., Adams I., Fox A., Boonham N., Ravnikar M. 2017. Next generation sequencing for detection and discovery of plant viruses and viroids: comparison of two approaches. Frontiers in Microbiology 8: 1998. DOI: 10.3389/fmicb.2017.01998

 

Roossinck M.J., Martin D.P., Roumagnac P. 2015. Plant virus metagenomics: advances in virus discovery. Phytopathology 105 (6): 716–727. DOI: 10.1094/PHYTO-12-14-0356-RVW

 

Sanger F., Brownlee G.G., Barrell B.G. 1965. A two-dimensional fractionation procedure for radioactive nucleotides. Journal of Molecular Biology 13 (2): 373–398. DOI: 10.1016/S0022-2836(65)80104-8

 

Sanger F., Nicklen S., Coulson A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proccedings of the National Academy of Sciences of the United States of America 74 (12): 5463–5467. DOI: 10.1073/pnas.74.12.5463

 

Santala J., Valkonen J.P.T. 2018. Sensitivity of small RNA-based detection of plant viruses. Frontiers in Microbiology 9: 939. DOI: 10.3389/fmicb.2018.00939

 

Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B., Hood L.E. 1986. Fluorescence detection in automated DNA sequence analysis. Nature 321: 674–679. DOI: 10.1038/321674a0

 

Stoddart D., Heron A.J., Mikhailova E., Maglia G., Bayley H. 2009. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proccedings of the National Academy of Sciences of the United States of America 106 (19): 7702–7707. DOI: 10.1073/pnas.0901054106

 

Villamor D.E., Pillai S.S., Eastwell K.C. 2017. High throughput sequencing reveals a novel fabavirus infecting sweet cherry. Archives of Virology 162: 811–816. DOI: 10.1007/s00705-016-3141-z

 

Watson J.D., Crick F.H. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171 (4356): 737–738. DOI: 10.1038/171737a0

 

Żmieńko A., Satyr A. 2020. Sekwencjonowanie nanoporowe i jego zastosowanie w biologii. Postępy Biochemii/Advances in Biochemistry 66 (3): 193–204. DOI: 10.18388/pb.2020_328

Progress in Plant Protection (2021) 61: 269-277
Data pierwszej publikacji on-line: 2021-10-08 11:06:47
http://dx.doi.org/10.14199/ppp-2021-029
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy