Progress in Plant Protection

Reakcja pszenicy jarej rosnącej w stresie suszy na dolistne i doglebowe stosowanie krzemu
Response of spring wheat grown in drought stress to foliar and soil silicon application

Urszula Sienkiewicz-Cholewa, e-mail: u.sienkiewicz@iung.wroclaw.pl

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska
Streszczenie

Celem badań była ocena działania dolistnej i doglebowej aplikacji krzemu (Si) na złagodzenie stresu suszy w pszenicy jarej. Dwuletnie badania przeprowadzono w hali wegetacyjnej w wazonach o pojemności 10 kg gleby. Krzem był aplikowany dolistnie w stężeniu 6 mM Si/l oraz doglebowo przed siewem roślin w dawkach 200 i 400 mg Si/kg, w postaci Na2SiO3. W fazie krzewienia wprowadzono stres suszy i utrzymywano wilgotność gleby na poziomie 30% PPW. Zastosowanie krzemu wpłynęło pozytywnie na plony i parametry biochemiczne roślin rosnących w stresie wodnym. Doglebowa suplementacja krzemem skuteczniej od dolistnej ograniczyła redukcję plonów i negatywny wpływ deficytu wody na rośliny. Pobranie krzemu przez pszenicę było większe z gleby niż z dolistnej aplikacji.

 

The aim of study was the evaluation of silicon (Si) foliar and soil application effect on mitigation of drought stress in spring wheat. Twoyears study was performed in greenhouse with the use of vases with a capacity of 10 kg of soil. Silicon was used as a foliar application at the concentration of 6 mM Si/l and as soil application before plant sowing at doses 200 and 400 mg Si/kg, in the form of Na2SiO3. At the growth stage of tillering, drought stress was introduced and soil moisture was kept at 30% PPW. Silicon application positively affected yield and biochemical parameters of plants growing under water stress. Soil application was more efficient than foliar one in reducing of yield decrease and negative impact of water deficit on plants. Silicon uptake from soil by wheat was greater than from foliar application.

Słowa kluczowe
stres suszy; krzem; Si; aplikacja dolistna i doglebowa; pszenica jara; drought stress; silicon; foliar and soil application; spring wheat
Referencje

Alam A., Hariyanto B., Ullah H., Salin K.R., Datta A. 2020. Effects of silicon on growth, yield and fruit quality of cantaloupe under drought stress. Silicon. DOI: 10.1007/s12633-020-00673-1

 

Ali A.M., Ibrahim S.M., Abou-Amer I. 2019. Water deficit stress mitigation by foliar application of potassium silicate for sugar beet grown in a saline calcareous soil. Egyptian Journal of Soil Science 59 (1): 15–23. DOI: 10.21608/ejss.2019.7086.1236

 

Atkinson N.J., Urwin P.E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63 (10): 3523–3543. DOI: 10.1093/jxb/ers100

 

Bukhari M.A., Ahmad Z.M., Ashraf M.Y., Afzal M., Nawaz F., Nafees M., Jatoi W.N., Malghani N.A., Shah A.N., Manan A. 2020. Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters. Silicon. DOI: 10.1007/s12633-020-00797-4

 

Chen W., Yao X., Cai K., Chen J. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research 142 (1): 67–76. DOI: 10.1007/s12011-010-8742-x

 

Daryanto S., Wang L., Jacinthe P.-A. 2016. Global synthesis of drought effects on maize and wheat production. Plos One 11: 1–15. DOI: 10.1371/journal.pone.0156362

 

El-Mageed T.A.A., Shaaban A., El-Mageed S.A.A., Semida W.M., Rady M.O.A. 2020. Silicon defensive role in maize (Zea mays L.) against drought stress and metals-contaminated irrigation water. Silicon 13: 2165–2176. DOI: 10.1007/s12633-020-00690-0

 

Filipiak K., Wilkos S. 1995. Statistical calculations. Description of system AWAR. Instytut Uprawy Nawożenia i Gleboznawstwa, Puławy, R324, 52 ss.

 

Freitas L.B., Coelho E.M., Maia S.C.M., Silva T.R.B. 2011. Foliar fertilization with silicon in maize. Revista Ceres 58 (2): 262–267. DOI: 10.1590/S0034-737X2011000200020

 

Gomaa M.A., Kandil E.E., El-Dein A.A.M.Z., Abou-Donia M.E.M., Ali H.M., Abdelsalam N.R. 2021. Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Scientific Reports 11: 224. DOI: 10.1038/s41598-020-80656-9

 

Guével M.-H., Menzies J.G., Bélanger R.R. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. European Journal of Plant Pathology 119 (4): 429–436. DOI: 10.1007/s10658-007-9181-1

 

Habibi G. 2014. Silicon supplementation improves drought tolerance in canola plants. Russian Journal of Plant Physiology 61: 784–791. DOI: 10.1134/S1021443714060077

 

Hasegawa P.M., Bressan R.A., Zhu J.-K., Bohnert H.J. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51: 463–499. DOI: 10.1146/annurev.arplant.51.1.463

 

Kim W., Iizumi T., Nishimori M. 2019. Global patterns of crop production losses associated with droughts from 1983 to 2009. Journal of Applied Meteorology and Climatology 58 (6): 1233–1244. DOI: 10.1175/JAMC-D-18-0174.1

 

Kowalska J., Tyburski J., Bocianowski J., Krzymińska J., Matysiak K. 2020a. Methods of silicon application on organic spring wheat (Triticum aestivum L. spp. vulgare) cultivars grown across two contrasting precipitation years. Agronomy 10 (11): 1655. DOI: 10.3390/agronomy10111655

 

Kowalska J., Tyburski J., Jakubowska M., Krzymińska J. 2020b. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon 13: 211–217. DOI: 10.1007/s12633-020-00414-4

 

Laane H.-M. 2018. The effects of foliar sprays with different silicon compounds. Plants 7 (2): 45. DOI: 10.3390/plants7020045

 

Ma D., Sun D., Wang C., Qin H., Ding H., Li Y., Guo T. 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation 35 (1): 1–10. DOI: 10.1007/s00344-015-9500-2

 

Maghsoudi K., Emam Y., Ashraf M., Arvin M.J. 2019. Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop & Pasture Science 70 (1): 36–43. DOI: 10.1071/CP18213

 

Matichenkov V.V. 2008. Silicon deficiency and functionality in soils, crops and food. s. 207–213. W: Proceedings of II International Conference on Soil and Compost Eco-Biology, November 26–29, 2008, Puerto de la Cruz, Tenerife.

 

Othmani A., Ayed S., Bezzin O., Farooq M., Ayed-Slama O., Slim-Amara H., Younes M.B. 2020. Effect of silicon supply methods on durum wheat (Triticum durum Desf.) response to drought stress. Silicon. DOI: 10.1007/s12633-020-00639-3

 

Sacała E. 2009. Role of silicon in plant resistance to water stress. [Rola krzemu w odporności roślin na stres wodny]. Journal of Elementology 14 (3): 619–630.

 

Sattar A., Cheema M.A., Sher A., Ijaz M., Ul‑Allah S., Nawaz A., Abbas T., Ali Q. 2019. Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiologiae Plantarum 41 (8): 146. DOI: 10.1007/s11738-019-2938-2

 

Shen B., Jensen R.G., Bohnert H.J. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology 113 (4): 1177–1183. DOI: 10.1104/pp.113.4.1177

 

Sienkiewicz-Cholewa U., Zajączkowska A. 2020. Rola i plonotwórcze efekty stosowania krzemu na przykładzie światowych badań. [The role and yield-forming effect of silicon application based on the example of global research]. Progress in Plant Protection 60 (4): 313–319. DOI: 10.14199/ppp-2020-034

 

Tubana B.S., Babu T., Datnoff L.E. 2016. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Science 181 (9/10): 393–411. DOI: 10.1097/SS.0000000000000179

 

Ullah H., Luc P.D., Gautam A., Datta A. 2018. Growth, yield and silicon uptake of rice (Oryza sativa) as influenced by dose and timing of silicon application under water-deficit stress. Archives of Agronomy and Soil Science 64 (3): 318–330. DOI: 10.1080/03650340.2017.1350782

 

Zajączkowska A., Korzeniowska J., Sienkiewicz-Cholewa U. 2020. Effect of soil and foliar silicon application on the reduction of zinc toxicity in wheat. Agriculture 10 (11): 522. DOI: 10.3390/agriculture10110522

 

Zhu J.-K. 2001. Plant salt tolerance. Trends in Plant Science 6 (2): 66–71. DOI: 10.1016/S1360-1385(00)01838-0

Progress in Plant Protection (2021) : 0-0
Data pierwszej publikacji on-line: 2021-08-20 14:43:30
http://dx.doi.org/10.14199/ppp-2021-023
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy