Progress in Plant Protection

Zastosowanie teledetekcji hiperspektralnej do monitorowania porażenia roślin uprawnych przez patogeny
Application of hyperspectral remote sensing to monitor infection of crops by pathogens

Andrzej Wójtowicz, e-mail: a.wojtowicz@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Streszczenie

Teledetekcja hiperspektralna polega na gromadzeniu i przetwarzaniu informacji o odbiciu promieniowania elektromagnetycznego od badanego obiektu w bardzo wąskich zakresach spektralnych. Istotą tej metody w odniesieniu do monitorowania zdrowotności upraw jest rejestracja różnic w odbiciu promieniowania od roślin zdrowych i porażonych. W niniejszej pracy omówiono przykłady zastosowania tej technologii do monitorowania występowania patogenów na roślinach zbożowych (Zymoseptoria tritici, Blumeria graminis, Puccinia striiformis, Puccinia recondita, Puccinia graminis, Fusarium culmorum, Fusarium graminearum, Pyrenophora tritici-repentis), okopowych (Phytophthora infestans, Alternaria solani, Cercospora beticola, Erysiphe betae, Uromyces betae) i przemysłowych (Sclerotinia sclerotiorum, Golovinomyces cichoracearum, Septoria helianthi, Verticillium dahliae, Phymatotrichopsis omnivora, Puccinia kuehnii, Puccinia melanocephala, wirus ziemniaka Y, wirus brązowej plamistości pomidora, wirus mozaiki tytoniu).

 

Hyperspectral remote sensing consists in collecting and processing information about the reflectance of electromagnetic radiation from the examined object in very narrow spectral ranges. The essence of this method in relation to the monitoring of the health of crops is the registration of differences in the reflectance of radiation from healthy and infected plants. This paper presents examples of the use of this technology to monitoring of the occurrence of pathogens on cereal plants (Zymoseptoria tritici, Blumeria graminis, Puccinia striiformis, Puccinia recondita, Puccinia graminis, Fusarium culmorum, Fusarium graminearum, Pyrenophora tritici-repentis), root crops (Phytophthora infestans, Alternaria solani, Cercospora beticlerotinia, Erysiphe betae, Uromyces betae) and industrial plants (Golovinomyces cichoracearum, Septoria helianthi, Verticillium dahliae, Phymatotrichopsis omnivora, Puccinia kuehnii, Puccinia melanocephala, potato virus Y, tomato spotted wilt virus, tobacco mosaic virus).

Słowa kluczowe
teledetekcja hiperspektralna; patogeny; krzywa spektralna; hyperspectral remote sensing; pathogens; spectral curve
Referencje

Anderegg J., Hund A., Karisto P., Mikaberidze A. 2019. In-field detection and quantification of Septoria tritici blotch in diverse wheat germplasm using spectral-temporal features. Frontiers in Plant Science 10: 1355. DOI: 10.3389/fpls.2019.01355

 

Bauriegel E., Giebel A., Geyer M., Schmidt U., Herppich W.B. 2011. Early detection of Fusarium infection in wheat using hyperspectral imaging. Computers and Electronics in Agriculture 75 (2): 304–312. DOI: 10.1016/j.compag.2010.12.006

 

Cao X., Luo Y., Zhou Y., Duan X., Cheng D. 2013. Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Protection 45: 124–131. DOI: 10.1016/j.cropro.2012.12.002

 

Carter G.A., Knapp A.K. 2001. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany 88 (4): 677–684.

 

Chen N., Liu F., Jiang L., Feng L., He Y., Bao Y. 2022. Diagnosis of Sclerotinia infected oilseed rape (Brassica napus L) using hyperspectral imaging and chemomtrics. https://www.ispag.org/proceedings/?action=abstract&id=1532&title=Diagnosis+Of+Sclerotinia+Infected+Oilseed+Rape+%28Brassica+Napus+L%29+Using+Hyperspectral+Imaging+And+Chemomtrics&search=types

 

Chen B., Wang K., Li S., Wang J., Bai J., Xiao C., Lai J. 2008. Spectrum characteristics of cotton canopy infected with Verticillium wilt and inversion of severity level. W: Computer and computing technologies in agriculture, volume II (D. Li, red.). Springer, 259: 1169–1180. DOI: 10.1016/S1671-2927(08)60053-X

 

Couture J.J., Singh A., Charkowski A.O., Groves R.L., Gray S.M., Bethke P.C., Townsend P.A. 2018. Integrating spectroscopy with potato disease management. Plant Disease 102 (11): 2233–2240. DOI: 10.1094/PDIS-01-18-0054-RE

 

Curran P.J. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30 (3): 271–278. DOI: 10.1016/0034-4257-(89)90069-2

 

Delalieux S., van Aardt J.A.N., Keulemans W., Schrevens E., Coppin P. 2007. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. European Journal of Agronomy 27 (1): 130−143. DOI: 10.1016/j.eja.2007.02.005

 

Devadas R., Lamb D.W., Simpfendorfer S., Backhouse D. 2009. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture 10 (6): 459–470. DOI: 10.1007/s11119-008-9100-2

 

Fang Y., Ramasamy R.P. 2015. Current and prospective methods for plant disease detection. Biosensors (Basel) 6; 5 (3): 537–561. DOI: 10.3390/bios5030537

 

Franceschini M.H.D., Bartholomeus H., van Apeldoorn D., Suomalainen J., Kooistra L. 2017. Assessing changes in potato canopy caused by late blight in organic production systems through UAV-based pushbroom imaging spectrometer. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W6. International Conference on Unmanned Aerial Vehicles in Geomatics, 4–7 September 2017, Bonn, Germany, 42: 109–112. DOI: 10.5194/isprsarchives-XLII-2-W6-109-2017

 

Gold K.M., Townsend P.A., Chlus A., Herrmann I., Couture J.J., Larson E.R., Gevens A.J. 2020. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sensing 12 (2): 286. DOI: 10.3390/rs12020286

 

Graeff S., Link J., Claupein W. 2006. Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Central European Journal of Biology 1: 275–288. DOI: 10.2478/s11535-006-0020-8

 

Hillnhütter C., Mahlein A.-K., Sikora R.A., Oerke E.-C. 2011. Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Research 122 (1): 70–77. DOI: 10.1016/j.fcr.2011.02.007

 

Huang W., Lamb D.W., Niu Z., Zhang Y., Liu L., Wang J. 2007. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture 8: 187–197. DOI: 1007/s11119-007-9038-9

 

Huang J., Liao H., Zhu Y., Sun J., Sun Q., Liu X. 2012. Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Computers and Electronics in Agriculture 82: 100–107. DOI: 10.1016/j. compag.2012.01.002

 

Hunt Jr. E.R., Rock B.N. 1989. Detection in changes in leaf water content using near- and middle-infrared reflectances. Remote Sensing of Environment 30 (1): 43–54. DOI: 10.1016/0034-4257(89)90046-1

 

Jacquemoud S., Ustin S.L. 2001. Leaf optical properties: a state of the art. s. 223–232. W: Proceedings of the 8th International Symposium Physical Measurements & Signatures in Remote Sensing, 8–12 January 2001, CNES, Aussois, France.

 

Jin N., Huang W., Ren Y., Luo J., Wu Y., Jing Y., Wang D. 2013. Hyperspectral identification of cotton verticillium disease severity. Optik – International Journal for Light and Electron Optics 124 (16): 2569–2573. DOI: 10.1016/j.ijleo.2012.07.026

 

Kong W., Zhang C., Huang W., Liu F., He Y. 2018. Application of hyperspectral imaging to detect Sclerotinia sclerotiorum on oilseed rape stems. Sensors (Basel) 18 (1): 123. DOI: 10.3390/s18010123

 

Krezhova D., Petrov N., Maneva S. 2012. Hyperspectral remote sensing applications for monitoring and stress detection in cultural plants: viral infections in tobacco plants. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV (C.M.U. Neale, A. Maltese, red.). Proceedings of SPIE Vol. 8531, 85311H (23 October 2012). DOI: 10.1117/12.974722

 

Mahlein A.-K., Steiner U., Dehne H.-W., Oerke E.-C. 2010. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture 11 (4): 413–431. DOI: 10.1007/s11119-010-9180-7

 

Mahlein A.-K., Steiner U., Hillnhütter C., Dehne H.-W., Oerke E.-C. 2012. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8: 3. DOI: 10.1186/1746-4811-8-3

 

Mirik M., Michels Jr. G.J., Kassymzhanova-Mirik S., Elliott N.C., Catana V., Jones D.B., Bowling R. 2006. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Computers and Electronics in Agriculture 51 (1–2): 86–98. DOI: 10.1016/j.compag.2005.11.004

 

Mishra P., Polder G., Vilfan N. 2020. Close range spectral imaging for disease detection in plants using autonomous platforms: a review on recent studies. Current Robotics Reports 1: 43–48. DOI: 10.1007/s43154-020-00004-7

 

Muhammed H.H., Larsolle A. 2003. Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat. Biosystems Engineering 86 (2): 125–134. DOI: 10.1016/S1537-5110-(03)00090-4

 

Oerke E.-C., Leucker M., Steiner U. 2019. Sensory assessment of Cercospora beticola sporulation for phenotyping the partial disease resistance of sugar beet genotypes. Plant Methods 15: 133. DOI: 10.1186/s13007-019-0521-x

 

Okamoto H., Murata T., Kataoka T., Hata S.-I. 2007. Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biology and Management 7 (1): 31–37. DOI: 10.1111/j.1445-6664.2006.00234.x

 

Pérez-Bueno M.L., Pineda M., Barón M. 2019. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science 10: 1135. DOI: 10.3389/fpls.2019.01135

 

Prabhakar M., Prasad Y.G., Rao M.N. 2012. Remote sensing of biotic stress in crop plants and its applications for pest management. W: Crop Stress and its Management: Perspectives and Strategies (B. Venkateswarlu, A. Shanker, C. Shanker, M. Maheswari, red.). Springer, Dordrecht. Print ISBN 978-94-007-2219-4. Online ISBN 978-94-007-2220-0. DOI: 10.1007/978-94-007-2220-0_16

 

Ray S.S., Jain N., Arora R.K., Chavan S., Panigrahy S. 2011. Utility of hyperspectral data for potato late blight disease detection. Journal of the Indian Society of Remote Sensing 39: 161. DOI: 10.1007/s12524-011-0094-2

 

Rumpf T., Mahlein A.-K., Steiner U., Oerke E.-C., Dehne H.-W., Plümer L. 2010. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Computers and Electronics in Agriculture 74 (1): 91–99. DOI: 10.1016/j.compag.2010.06.009

 

Sahoo R.N., Ray S.S., Manjunath K.R. 2015. Hyperspectral remote sensing of agriculture. Current Science 108 (5): 848–859.

 

Soca-Muñoz J.L., Rodríguez-Machado E., Aday-Díaz O., Hernández-Santana L., Orozco-Morales R. 2020. Spectral signature of brown rust and orange rust in sugarcane. Revista Facultad de Ingeniería Universidad de Antioquia 96: 9–20. DOI: 10.17533/udea.redin.20191042

 

Thomas S., Kuska M.T., Bohnenkamp D., Brugger A., Alisaac E., Wahabzada M., Behmann J., Mahlein A.-K. 2017. Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective. Journal of Plant Diseases and Protection 125: 5–20. DOI: 10.1007/s41348-017-0124-6

 

Vane G., Goetz A.F.H. 1993. Terrestrial imaging spectrometry: Current status, future trends. Remote Sensing of Environment 44 (2–3): 117−126. DOI: 10.1016/0034-4257(93)90011-L

 

Whetton R.L., Hassall K.L., Waine T.W., Mouazen A.M. 2018. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosystems Engineering 166: 101–115. DOI: 10.1016/j.biosystemseng.2017.11.008

 

Xu J.-L., Gobrecht A., Héran D., Gorretta N., Coque M., Gowen A.A., Bendoula R., Sun D.-W. 2019. A polarized hyperspectral imaging system for in vivo detection: Multiple applications in sunflower leaf analysis. Computers and Electronics in Agriculture 158: 258–270. DOI: 10.1016/j.compag.2019.02.008

 

Yang C., Everitt J.H., Fernandez C.J. 2010. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot. Biosystems Engineering 107 (2): 131–139. DOI: 10.1016/j.biosystemseng.2010.07.011

 

Yao Z., Lei Y., He D. 2019. Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging. Sensors (Basel) 19 (4): 952. DOI: 10.3390/s19040952

 

Yu K., Anderegg J., Mikaberidze A., Karisto P., Mascher F., McDonald B.A., Walter A., Hund A. 2018. Hyperspectral canopy sensing of wheat Septoria tritici blotch disease. Frontiers in Plant Science 9: 1195. DOI: 10.3389/fpls.2018.01195

 

Yuan L., Huang Y., Loraamm R.W., Nie C., Wang J., Zhang J. 2014. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research 156: 199–207. DOI: 10.1016/j.fcr.2013.11.012

 

Zhang J.-C., Pu R., Wang J., Huang W., Yuan L., Luo J. 2012. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture 85: 13–23. DOI: 10.1016/j.compag.2012.03.006

 

Zhang N., Yang G., Pan Y., Yang X., Chen L., Zhao C. 2020. A review of advanced technologies and development for hyperspectral-based plant disease detection in the past three decades. Remote Sensing 12 (19): 3188. DOI: 10.3390/rs12193188

 

Zhang J., Yuan L., Pu R., Loraamm R.W., Yang G., Wang J. 2014. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Computers and Electronics in Agriculture 100: 79–87. DOI: 10.1016/j.compag.2013.11.001

 

Zhao Y.-R., Yu K.-Q., Li X., He Y. 2016. Detection of fungus infection on petals of rapeseed (Brassica napus L.) using NIR hyperspectral imaging. Scientific Reports 6: 38878. DOI: 10.1038/srep38878

 

Zhu H., Chu B., Zhang C., Liu F., Jiang L., He Y. 2017. Hyperspectral maging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Scientific Reports 7: 4125. DOI: 10.1038/s41598-017-04501-2

Progress in Plant Protection (2022) 62: 66-75
Data pierwszej publikacji on-line: 2022-03-17 11:06:47
http://dx.doi.org/10.14199/ppp-2022-009
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy