Progress in Plant Protection

Ekspresja genów kodujących oksydazę polifenolową oraz amoniakoliazę L-fenyloalaniny pszenicy w odpowiedzi na żerowanie larw Oulema spp.
Expression of genes encoding polyphenol oxidase and phenylalanine ammonia-lyase in wheat in response to Oulema spp. larvae feeding

Beata Wielkopolan, e-mail: B.Wielkopolan@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Streszczenie

Skrzypionki należą do ważnych gospodarczo agrofagów zbóż, ponieważ ich żerowanie, szczególnie stadium larwalnego, może znacznie zmniejszyć jakość oraz ilość uzyskanego plonu. Celem pracy było sprawdzenie ekspresji genów PPO oraz PAL biorących udział w produkcji metabolitów wtórnych, w odpowiedzi na żerowanie larw skrzypionek ze zredukowanym lub niezredukowanym komponentem bakteryjnym. Wykazano, że bakterie związane z larwami skrzypionek tłumią odpowiedź pszenicy na korzyść gospodarza – owada. Każda z trzech odmian pszenicy wykształciła unikalny mechanizm obronny na żerowanie larw skrzypionek (między innymi uszkodzenie mechaniczne czy uszkodzenie powstałe w wyniku żerowania owada). Odmiana Arkadia znacznie szybciej oraz silniej reagowała na traktowanie w porównaniu do dwóch pozostałych odmian pszenicy. Zrozumienie ekspresji genów zaangażowanych w obronę roślin przeciwko roślinożernym szkodnikom jest bardzo ważne z ekologicznego punktu widzenia i ma duży potencjał do wykorzystania w ochronie roślin.

 

Cereal leaf beetle (CLB, Oulema spp.) are economically important pests of cereals, because their feeding, especially at the larval stage may significantly reduce the quality and quantity of the obtained crop. The aim of the study was explanation the expression level of PPO and PAL genes involved in the secondary metabolites production in response to feeding of CLB larvae with a reduced or not reduced bacterial component. It was indicated that bacteria associated with CLB larvae supressed wheat response to CLB feeding to the benefit of insect host. Each of the three wheat varieties developed a unique defence mechanism against tested stress factors (including mechanical damage or damage caused by larvae feeding). The Arkadia variety reacted much faster and stronger to treatments in comparison to the other two wheat varieties. Understanding of the expression of genes involved in the plant defence response against herbivory pests is very important from an ecological point of view and has a great potential for use in plant protection.

Słowa kluczowe
Oulema spp.; pszenica; odpowiedź obronna; bakterie; metabolity wtórne; PPO; PAL; wheat; defense response; bacteria; secondary metabolites
Referencje

Bernards M.A., Båstrup-Spohr L. 2008. Phenylpropanoid metabolism induced by wounding and insect herbivory. s. 189–211. W: Induced Plant Resistance to Herbivory (A. Schaller, red.). Springer, Dordrecht. DOI: 10.1007/978-1-4020-8182-8_9

 

Bhonwong A., Stout M.J., Attajarusit J., Tantasawat P. 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology 35 (1): 28–38. DOI: 10.1007/s10886-008-9571-7

 

Chung S.H., Rosa C., Scully E.D., Peiffer M., Tooker J.F., Hoover K., Luthe D.S., Felton G.W. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. Proceedings of the National Academy of Sciences of the United States of America 110 (39): 15728–15733. DOI: 10.1073/pnas.1308867110

 

He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Liu Z., Guan Z., He C. 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology 168 (7): 687–693. DOI: 10.1016/j.jplph.2010.10.009

 

Jones A.G., Mason C.J., Felton G.W., Hoover K. 2019. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports 9: 2792. DOI: 10.1038/s41598-019-39163-9

 

Lv M., Kong H., Liu H., Lu Y., Zhang C., Liu J., Ji C., Zhu J., Su J., Gao X. 2017. Induction of phenylalanine ammonia-lyase (PAL) in insect damaged and neighboring undamaged cotton and maize seedlings. International Journal of Pest Management 63 (2): 166–171. DOI: 10.1080/09670874.2016.1255804

 

Łyczko J., Twardowski J.P., Skalny B., Galek R., Szumny A., Gruss I., Piesik D., Sendel S. 2021. Sarracenia alata (Alph.Wood) Alph.Wood microcuttings as a source of volatiles potentially responsible for insects’ respond. Molecules 26 (9): 2406. DOI: 10.3390/molecules26092406

 

Piesik D., Bocianowski J., Sendel S., Krawczyk K., Kotwica K. 2020. Beetle orientation responses of Gastrophysa viridula and Gastrophysa polygoni (Coleoptera: Chrysomelidae) to a blend of synthetic volatile organic compounds. Environmental Entomology 49 (5): 1071–1076. DOI: 10.1093/ee/nvaa082

 

Ralph S.G., Yueh H., Friedmann M., Aeschliman D., Zeznik J.A., Nelson C.C., Butterfield Y.S.N., Kirkpatrick R., Liu J., Jones S.J.M., Marra M.A., Douglas C.J., Ritland K., Bohlmann J. 2006. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant, Cell & Environment 29 (8): 1545–1570. DOI: 10.1111/j.1365-3040.2006.01532.x

 

Reymond P., Bodenhausen N., van Poecke R.M.P., Krishnamurthy V., Dicke M., Farmer E.E. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. The Plant Cell 16 (11): 3132–3147. DOI: 10.1105/tpc.104.026120

 

Saltveit M.E., Choi Y.-J., Tomás-Berberán F.A. 2005. Involvement of components of the phospholipid-signaling pathway in wound-induced phenylpropanoid metabolism in lettuce (Lactuca sativa) leaf tissue. Physiologa Plantarum 125 (3): 345–355. DOI: 10.1111/j.1399-3054.2005.00574.x

 

Sethi A., McAuslane H.J., Rathinasabapathi B., Nuessly G.S., Nagata R.T. 2009. Enzyme induction as a possible mechanism for latex-mediated insect resistance in romaine lettuce. Journal of Chemical Ecology 35: 190–200. DOI: 10.1007/s10886-009-9596-6

 

Tscharntke T., Thiessen S., Dolch R., Boland W. 2001. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology 29 (10): 1025–1047. DOI: 10.1016/S0305-1978(01)00048-5

 

Usha Rani P., Jyothsna Y. 2010. Biochemical and enzymatic changes in rice plants as a mechanism of defense. Acta Physiologiae Plantarum 32: 695–701. DOI: 10.1007/s11738-009-0449-2

 

Van Eck L., Schultz T., Leach J.E., Scofield S.R., Peairs F.B., Botha A.-M., Lapitan N.L.V. 2010. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnology Journal 8 (9): 1023–1032. DOI: 10.1111/j.1467-7652.2010.00539.x

 

War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Ignacimuthu S., Sharma H.C. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behaviour 7 (10): 1306–1320. DOI: 10.4161/psb.21663

 

War A.R., Paulraj M.G., Ignacimuthu S., Sharma H.C. 2013. Defensive responses in groundnut against chewing and sap-sucking insects. Journal of Plant Growth Regulation 32: 259–272. DOI: 10.1007/s00344-012-9294-4

 

War A.R., Paulraj M.G., War M.Y., Ignacimuthu S. 2011. Jasmonic acid- mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation 30 (4): 512–523. DOI: 10.1007/s00344-011-9213-0

 

War A.R., Taggar G.K., Hussain B., Taggar M.S., Nair R.M., Sharma H.C. 2018. Plant defence against herbivory and insect adaptations. AoB Plants 10 (4): ply037. DOI: 10.1093/aobpla/ply037

 

Wielkopolan B., Krawczyk K., Obrępalska-Stęplowska A. 2018. Gene expression of serine and cysteine proteinase inhibitors during cereal leaf beetle larvae feeding on wheat: the role of insect-associated microorganisms. Arthropod-Plant Interactions 12 (4): 601–612. DOI: 10.1007/s11829-018-9608-y

 

Wielkopolan B., Obrępalska-Stęplowska A. 2016. Three-way interaction among plants, bacteria, and coleopteran insects. Planta 244 (2): 313–332. DOI: 10.1007/s00425-016-2543-1

 

Wrzesińska B., Kierzek R., Obrępalska-Stęplowska A. 2016. Evaluation of six commonly used reference genes for gene expression studies in herbicide-resistant Avena fatua biotypes. Weed Research 56 (4): 284–292. DOI: 10.1111/wre.12209

 

Zhang C., Wang X., Zhang F., Dong L., Wu J., Cheng Q., Qi D., Yan X., Jiang L., Fan S., Li N., Li D., Xu P., Zhang S. 2017. Phenylalanine ammonia-lyase2.1 contributes to the soybean response towards Phytophthora sojae infection. Scientific Report 7: 7242. DOI: 10.1038/s41598-017-07832-2

 

Progress in Plant Protection (2021) 61: 308-318
Data pierwszej publikacji on-line: 2021-10-28 15:10:42
http://dx.doi.org/10.14199/ppp-2021-033
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy