Progress in Plant Protection

Zróżnicowanie polskich izolatów wirusa żółtej mozaiki fasoli (bean yellow mosaic virus, BYMV) wyizolowanych z roślin bobu
Diversity of the Polish isolates of bean yellow mosaic virus (BYMV) isolated from broad bean

Beata Hasiów-Jaroszewska, e-mail: b.hasiow@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Beata Komorowska, e-mail: beata.komorowska@inhort.pl

Instytut Ogrodnictwa – Państwowy Instytut Badawczy, Konstytucji 3 Maja 1/3, 96-100 Skierniewice , Polska
Streszczenie

Wirus żółtej mozaiki fasoli (bean yellow mosaic virus, BYMV) jest jednym z najbardziej rozpowszechnionych i szkodliwych wirusów roślin strączkowych na świecie. W celu scharakteryzowania izolatów BYMV wykrytych w dziesięciu roślinach bobu w Polsce, wyizolowano całkowite kwasy nukleinowe, zamplifikowano metodą RT-PCR fragment genu kodującego poliproteinę, a następnie poddano go sekwencjonowaniu. Sekwencje genu kodującego białka płaszcza (CP) trzech polskich izolatów (E1, E2, E3) porównano z 33 sekwencjami pobranymi z Banku Genów. Sekwencje badanych izolatów wykazały 81,8–99,8% identyczności na poziomie nukleotydów i 84,9–99,6% na poziomie aminokwasów z innymi izolatami BYMV. Analizy przeprowadzone z wykorzystaniem sekwencji CP potwierdziły zróżnicowanie populacji BYMV i obecność trzech grup filogenetycznych. Polskie izolaty zostały zakwalifikowane do grupy I (E1 i E2) oraz III (E3).

 

Bean yellow mosaic virus (BYMV) is one of the most widespread and damaging viruses of cultivated legumes in the world. In order to characterise BYMV isolates detected in ten broad bean plants in Poland, total nucleic acids were isolated, a fragment of the gene encoding the polyprotein was amplified by RT-PCR and then sequenced. The sequences of the coat protein (CP) gene of the three Polish isolates (E1, E2, E3) were compared with 33 sequences retrieved from the GenBank database. The sequences of the tested isolates showed 81,8–99,8% identity at the nucleotide level and 84,9–99,6% at the amino acid level with other BYMV isolates. The analysis performer based on CP sequences confirmed the genetic diversity of the BYMV population and revealed the presence of three phylogenetic groups. The Polish isolates were classified into I (E1 and E2) and III (E3) group.

Słowa kluczowe

BYMV; bób; RT-PCR; ELISA; filogeneza; broad bean; phylogenesis

Referencje

Berlandier F.A., Thackray D.J., Jones R.A.C., Latham L.J., Cartwright L. 1997. Determining the relative roles of different aphid species as vectors of cucumber mosaic and bean yellow mosaic viruses in lupins. Annals of Applied Biology 131 (2): 297–314. DOI: 1744-7348.1997.tb05158.x

 

Boom R., Sol C.J., Salimans M.M., Jansen C.L., Wertheim-van Dillen P.M., van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology 28 (3): 495–503. DOI: 10.1128/jcm.28.3.495-503.1990

 

Bos L. 1970. Bean yellow mosaic virus. CMI/AAB Descriptions of plant viruses. No. 40. Association of Applied Biology, Kew, Surrey, England, 4 ss.

 

Chare E.R., Holmes E.C. 2006. A phylogenetic survey of recombination frequency in plant RNA viruses. Archives of Virology 151: 933–946. DOI: 10.1007/s00705-005-0675-x

 

Chung B.Y., Miller W.A., Atkins J.F., Firth A.E. 2008. An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America 105 (15): 5897–5902. DOI: 10.1073/pnas.0800468105

 

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. DOI: 10.14601/Phytopathol_Mediterr-14998u1.29

 

Hammond J., Hammond R.W. 1989. Molecular cloning, sequencing and expression in Escherichia coli of the bean yellow mosaic virus coat protein gene. Journal of General Virology 70: 1961–1974. DOI: 10.1099/0022-1317-70-8-1961

 

Jones R.A.C., Coutts B.A., Cheng Y. 2003. Yield limiting potential of necrotic and non-necrotic strains of Bean yellow mosaic virus in narrow-leafed lupin (Lupinus angustifolius). Australian Journal of Agricultural Research 54 (9): 849–859. DOI: 10.1071/AR03087

 

Jones R.A.C., McLean G.D. 1989. Virus diseases of lupins. Annals of Applied Biology 114 (3): 609–637. DOI: 10.1111/j.1744-7348.1989.tb03376.x

 

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35 (6): 1547–1549. DOI: 10.1093/molbev/msy096

 

Lisa V., Boccardo G., D’Agostino G., Dellavalle G., D’Aquilio M. 1981. Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71 (7): 667–672. DOI: 10.1094/Phyto-71-667

 

Lovisolo O., Hull R., Rösler O. 2003. Coevolution of viruses with hosts and vectors and possible palaeontology. Advances in Virus Research 62: 325–379. DOI: 10.1016/s0065-3527(03)62006-3

 

Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution 1 (1): 1–5. DOI: 10.1093/ve/vev003

 

McKirdy S.J., Jones R.A.C., Latham L.J., Coutts B.A. 2000. Bean yellow mosaic potyvirus infection of alternative annual pasture, forage, and cool season crop legumes: susceptibility, sensitivity, and seed transmission. Australian Journal of Agricultural Research 51 (3): 325–346. DOI: 10.1071/AR99110

 

Minicka J., Zarzyńska-Nowak A., Budzyńska D., Borodynko-Filas N., Hasiów-Jaroszewska B. 2020. High-throughput sequencing facilitates discovery of new plant viruses in Poland. Plants 9 (7): 820. DOI: 10.3390/plants9070820

 

Olspert A., Chung B.Y.-W., Atkins J.F., Carr J.P., Firth A.E. 2015. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Reports 16 (8): 995–1004. DOI: 10.15252/embr.201540509

 

Revers F., García J.A. 2015. Molecular biology of potyviruses. Advances in Virus Research 92: 101–199. DOI: 10.1016/bs.aivir.2014.11.006

 

Riechmann J.L., Lain S., Garcia J.A. 1992. Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73: 1–16. DOI: 10.1099/0022-1317-73-1-1

 

Sasaya T., Nozu Y., Koganezawa H. 1998. Biological and serological comparisons of bean yellow mosaic virus (BYMV) isolates in Japan. Japanese Journal of Phytopathology 64 (1): 24–33. DOI: 10.3186/jjphytopath.64.24

 

Sutic D.D., Ford R.E., Tosic M.T. 1999. Handbook of Plant Virus Diseases. CRC Press, Boca Raton, USA, 584 ss. ISBN 978-08-49323-027.

 

Urcuqui-Inchima S., Haenni A.L., Bernardi F. 2001. Potyvirus proteins: a wealth of functions. Virus Research 74 (1–2): 157–175. DOI: 10.1016/s0168-1702(01)00220-9

 

Wada Y., Iwai H., Ogawa Y., Arai K. 2000. Comparison of pathogenicity and nucleotide sequences of 3′-terminal regions of Bean yellow mosaic virus isolates from gladiolus. Journal of General Plant Pathology 66: 345–352. DOI: 10.1007/PL00012976

 

Wylie S.J., Coutts B.A., Jones M.G.K., Jones R.A.C. 2008. Phylogenetic analysis of Bean yellow mosaic virus isolates from four continents: relationship between the seven groups found and their hosts and origins. Plant Disease 92 (12): 1596–1603. DOI: 10.1094/PDIS-92-12-1596

 

Zheng L., Wayper P.J., Gibbs A.J., Fourment M., Rodoni B.C., Gibbs M.J. 2008. Accumulating variation at conserved sites in potyvirus genomes is driven by species discovery and affects degenerate primer design. PLOS ONE 3 (2): e1586. DOI: 10.1371/journal.pone.0001586

Progress in Plant Protection (2022) 62: 44-50
Data pierwszej publikacji on-line: 2022-02-25 13:30:37
http://dx.doi.org/10.14199/ppp-2022-006
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy