Progress in Plant Protection

Wpływ temperatury na wzrost akaropatogenicznych grzybów z rodzaju Hirsutella
The effect of temperature on the growth of acaropathogenic fungi from Hirsutella genus

Cezary Tkaczuk, e-mail: cezary.tkaczuk@uph.edu.pl

Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach, Wydział Agrobioinżynierii i Nauk o Zwierzętach, Instytut Rolnictwa i Ogrodnictwa, Bolesława Prusa 14, 08-110 Siedlce, Polska

Anna Majchrowska-Safaryan, e-mail: anna.majchrowska-safaryan@uph.edu.pl

Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach, Wydział Agrobioinżynierii i Nauk o Zwierzętach, Instytut Rolnictwa i Ogrodnictwa, Bolesława Prusa 14, 08-110 Siedlce, Polska

Tomasz Krzyczkowski, e-mail: tkrzyczkowski@gmail.com

Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach, Wydział Agrobioinżynierii i Nauk o Zwierzętach, Instytut Rolnictwa i Ogrodnictwa, Bolesława Prusa 14, 08-110 Siedlce, Polska

Marta Wrzosek, e-mail: martawrzosek@gmail.com

Uniwersytet Warszawski, Ogród Botaniczny, Aleje Ujazdowskie 4, 00-478 Warszawa, Polska
Streszczenie

Celem pracy było określenie wpływu temperatury na wzrost czterech gatunków grzybów akaropatogenicznych z rodzaju Hirsutella (wyizolowanych z roztoczy) hodowanych w warunkach in vitro na dwóch podłożach Sabourauda (SDA) i Czapek-Dox. W warunkach laboratoryjnych zbadano wpływ siedmiu zakresów temperatury (5–35°C). Obserwacje wzrostu kolonii prowadzono co 5 dni aż do 25 dnia mierząc średnice kolonii w mm. Obliczono tempo wzrostu testowanych izolatów w mm na dzień. Przeprowadzone badania wykazały, że optimum termiczne większości testowanych izolatów grzybów z rodzaju Hirsutella zawierało się między 20°C a 25°C, przy czym poszczególne wartości były zróżnicowane w zależności od rodzaju pożywki, na której rozwijało się inokulum. Gatunkiem grzyba, który charakteryzował się największym zakresem temperaturowym wzrostu kolonii był grzyb Hirsutella thompsonii var. synnematosa. Był to jedyny spośród badanych szczepów grzybów akaropatogenicznych, który rozwijał się na obydwu typach podłoży hodowlanych, również w temperaturze 35°C. Najszybsze tempo wzrostu badanych izolatów grzybów akaropatogenicznych odnotowano przy temperaturze 25°C. Kultury badanych gatunków grzybów większe rozmiary osiągały na pożywce SDA niż na pożywce Czapek-Dox.

 

The aim of the study was to determine the effect of temperature on the growth of four species of acaropathogenic fungi of the genus Hirsutella (isolated from mites) grown in vitro on Sabouraud (SDA) and Czapek-Dox media. The effects of seven temperature ranges (5–35°C) were tested under laboratory conditions. Observations of colony growth were carried out every 5 days until day 25 by measuring the diameter of the colonies in mm. The growth rate of the test isolates was calculated in mm per day. The conducted studies showed that the thermal optimum of most of the tested isolates of acaropathogenic fungi of the genus Hirsutella was between 20°C and 25°C, with individual values varying depending on the type of medium on which the inoculum was developed. The fungus species with the highest temperature range of colony growth was Hirsutella thompsonii var. synnematosa. It was the only acaropathogenic fungus strain tested that developed on both types of culture medium, also at 35°C. The fastest growth rate of the tested isolates of acaropathogenic fungi was at 25°C. The cultures of the tested species of fungi reached larger sizes on the SDA medium rather than on Czapek-Dox medium.

Słowa kluczowe
grzyby akaropatogeniczne; Hirsutella spp.; temperatura; tempo wzrostu; podłoże hodowlane; acaropatogenic fungi; temperature; growth rate; growing medium
Referencje

Alexandre T.M., Alves L.F.A., Neves P.M.O.J., Alves S.B. 2006. Effect of temperature and poultry litter on Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch) virulence against the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Neotropical Entomology 35 (1): 75–82. DOI: 10.1590/s1519-566x2006000100011

 

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25 (17): 3389–3402. DOI: 10.1093/nar/25.17.3389

 

Bałazy S., Wrzosek M., Sosnowska D., Tkaczuk C., Muszewska A. 2008. Laboratory trials to infect insects and nematodes by some acaropathogenic Hirsutella strains (Mycota: Clavicipitaceous anmorphs). Journal of Invertebrate Pathology 97 (2): 103–113. DOI: 10.1016/j.jip.2007.08.006

 

Chandler D., Sunderland K.D., Ball B.V., Davidson G. 2001. Prospective biological control agents of Varroa destructor n. sp., an important pest of the European honeybee, Apis mellifera. Biocontrol Science of Technology 11 (4): 429–448. DOI: 10.1080/09583150120067472

 

Chandrapatya A., Dilokkunanant U. 1989. Utilization of Hirsutella thompsonii (Fisher) against the citrus rust mite, Phyllocoptruta oleivora (Ashmead). Research Report Submitted to National Research Council Thailand.

 

Christos G., Athanassiou N.G., Kavallieratos C.I.R., Demetrius C.K. 2017. Influence of temperature and relative humidity on the insecticidal efficacy of Metarhizium anisopliae against larvae of Ephestia kuehniella (Lepidoptera: Pyralidae) on wheat. Journal of Insect Science 17 (1): 1–22. DOI: 10.1093/jisesa/iew107

 

Davidson G., Phelps K., Sunderland K.D., Pell J.K., Ball B.V., Shaw K.E., Chandler D. 2003. Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. Journal of Applied Microbiology 94 (5): 816–825. DOI: 10.1046/j.1365-2672.2003.01871.x

 

Demite P.R., Feres R.J.F. 2008. Seasonality of pathogenic fungi in mites of rubbery tree plantations adjacent to fragments of Cerrado. Brazilian Journal of Biology 68 (3): 533–538. DOI: 10.1590/s1519-69842008000300010

 

Devi K.U., Sridevi V., Mohan Ch.M., Padmavathi J. 2005. Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. Journal of Invertebrate Pathology 88 (3): 181–189. DOI: 10.1016/j.jip.2005.02.001

 

Edgington S., Fernando L.C.P., Jones K. 2008. Natural incidence an environmental profiling of the mite-pathogenic fungus Hirsutella thompsonii Fisher for control of the coconut mite in Sri Lanka. International Journal of Pest Management 54 (2): 123–127. DOI: 10.1080/09670870701749950

 

Farguez J., Luz C. 2000. Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodinus prolixus. Journal of Invertebrate Pathology 75 (3): 202–211. DOI: 10.1006/jipa.1999.4923

 

Gerson U., Kenneth R., Muttath T.I. 1979. Hirsutella thompsonii a fungal pathogen of mites. II. Host-pathogen interactions. Annals of Applied Biology 91 (1): 29–40. DOI: 10.1111/j.1744-7348.1979.tb07410.x

 

Hodge K.T. 1998. Revisionary studies in Hirsutella (Anamorphic Hypocereales: Clavicipitaceae). UMI Microform 9900074, Ann Arbor.

 

Ibarra-Corteś K.H., Guzmán-Franco A.W., González-Fernández H., Suarez-Espinosa J., Baverstock J. 2013. Selection of a fungal isolate for the control of the pink hibiscus mealybug Maconellicoccus hirsutus. Pest Management Science 69 (7): 874–882.

 

Kenneth R., Muttath T.I., Gerson U. 1979. Hirsutella thompsonii, a fungal pathogen of mites. I. Biology of the fungus in vitro. Annals of Applied Biology 91 (1): 21–28. DOI: 10.1111/j.1744-7348.1979.tb07409.x

 

Kovač M., Gorczak M., Wrzosek M., Tkaczuk C., Pernek M. 2020. Identification of entomopathogenic fungi as naturally occurring enemies of the invasive oak lace bug, Corythucha arcuata (Say) (Hemiptera: Tingidae). Insects 11 (10): 679. DOI: 10.3390/insects11100679

 

Lipa J. 1971. Microbial control of mites and ticks. s. 357–373. W: Microbial Control of Insects and Mites (H.D. Burges, N.W. Hussey, red.). Academic Press, New York, 862 ss.

 

McCoy C.W. 1981. Pest control by the fungus Hirsutella thompsonii. s. 499–512. W: Microbial Control of Pests and Plant Diseases, 1970–1980 (H.D. Burges, red.). Academic Press, London, 949 ss. ISBN 978-012-143-36-04.

 

Miętkiewski R., Bałazy S., Tkaczuk C. 2000. Mythopatogens of mites in Poland – a review. Biocontrol Science of Technology 10 (4): 459–465. DOI: 10.1080/09583150050115043

 

Miętkiewski R., Bałazy S., Tkaczuk C. 2003. Mikozy szpecieli (Acari: Eriophyoidea) występujących na trawach. [Mycoses of eriophyid mites (Acari: Eriophyoidea) occurring on grasses]. Progress in Plant Protection/Postępy w Ochronie Roślin 43 (1): 268–276.

 

Minter D.W., Brady B.L. 1980. Mononematous species of Hirsutella. Transactions of the British Mycological Society 74 (2): 271–282. DOI: 10.1016/S0007-1536(80)80157-4

 

Minter D.W., Brady B.L., Hall R.A. 1983. Fife hyphomycetes isolated from eriophyide mites. Transactions of the British Mycological Society 81 (3): 455–471. DOI: 10.1016/S0007-1536(83)80114-4

 

Piątkowski J., Krzyżewska A. 2007. Influence of some physical factors on the growth and sporulation of entomopathogenic fungi. [Wpływ czynników fizycznych na wzrost i zarodnikowanie grzybów owadobójczych]. Acta Mycologica 42 (2): 255–265.

 

Polar P., Aquino de Muro M., Kairo M.T.K., Moore D., Pegram R., John S.-A., Roach-Benn C. 2005. Thermal characteristics of Metarhizium anisopliae isolates important for the development of biological pesticides for the control of cattle ticks. Veterinary Parasitology 134 (1–2): 159–167. DOI: 10.1016/j.vetpar.2005.07.010

 

Qu J.J., Zou X., Yu J., Zhou Y.M. 2017. The conidial mucilage, natural film coatings, is involved in environmental adaptability and pathogenicity of Hirsutella satumaensis Aoki. Scientific Reports 7: 1301. DOI: 10.1038/s41598-017-01368-1

 

Qu J.J., Zou X., Zhou Y.M., Han Y.M., Liang Z.Q. 2014. Identification of a parasitic Hirsutella Pat. of Bombyx mori Linnaeus. and sporulation conditions optimization. Microbiology China 41: 1326–1333.

 

Samson R.A., McCoy C.W., O’Donnell K.L. 1980. Taxonomy of the acarine parasite Hirsutella thompsonii. Mycology 72 (2): 359–377.

 

Sapna M., Peeyush K., Anushree M. 2015. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L. Journal of Parasitic Diseases 39 (4): 697–704. DOI: 10.1007/s12639-013-0408-0

 

Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., and Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109 (16): 6241–6246. DOI: 10.1073/pnas.1117018109

 

Sztejnberg A., Dorn-Shloush S., Gerson U. 1997. The biology of the acaropathogenic fungus Hirsutella kirchneri. Biocontrol-Science of Technology 7 (4): 577–590. DOI: 10.1080/09583159730631

 

Tkaczuk C., Łabanowska B.H., Miętkiewski R. 2004. The influence of pesticides on the growth of fungus Hirsutella nodulosa (Petch) – entomopathogen of strawberry mite (Phytonemus pallidus ssp. fragariae Zimm.). [Wpływ środków ochrony roślin na wzrost grzyba Hirsutella nodulosa (Petch) – patogena roztocza truskawkowca Phytonemus pallidus ssp. fragariae Zimm.). Journal of Fruit and Ornamental Plant Research 12: 119–126.

 

Tkaczuk C., Miętkiewski R., Bałazy S. 2003. Mycoses of phytophagous mites during the winter time. Proccedings of 9th European Meeting of the IOBC/WPRS Working Group „Insects Pathogens and Entomoparasitic Nematodes”. Salzau, Germany, 108 ss.

 

Van der Geest L.P.S., Elliot S.L., Breeuwer J.A.J., Beerling E.A.M. 2000. Diseases of mites. Experimental and Applied Acarology 24 (7): 497–560. DOI: 10.1023/A:1026518418163

 

Yeo H., Pell J., Alderson P.G., Clark S.J., Pye B.J. 2003. Labolatory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Managment Science 59 (2): 156–165. DOI: 10.1002/ps.622

Progress in Plant Protection (2022) : 0-0
Data pierwszej publikacji on-line: 2022-07-08 08:41:53
http://dx.doi.org/10.14199/ppp-2022-017
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy