Progress in Plant Protection

Ocena potencjalnej toksyczności dla ekosystemu wody słodkiej w wyniku chemicznej ochrony kukurydzy w różnych systemach uprawy roli
Assessing the potential toxicity for freshwater ecosystem from chemical protection of maize in different soil tillage systems

Małgorzata Holka, e-mail: m.holka@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Jolanta Kowalska, e-mail: j.kowalska@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska
Streszczenie

Celem pracy była ocena wpływu stosowania środków ochrony roślin na ekosystem wody słodkiej, w produkcji kukurydzy na ziarno w różnych systemach uprawy roli. Analizy wykonano na podstawie danych dotyczących chemicznej ochrony kukurydzy w uprawie płużnej, uproszczonej i siewie bezpośrednim. Dane pozyskano z 15 wybranych gospodarstw rolnych, położonych w województwie wielkopolskim. Badania przeprowadzono zgodnie z metodologią oceny cyklu życia. Za pomocą modelu PestLCI 2.08 określono emisje do środowiska pochodzące ze stosowania środków ochrony roślin. Obliczone wielkości emisji wykorzystano do oceny potencjalnej ekotoksyczności dla wody słodkiej z zastosowaniem modelu USEtox 2.02. Stwierdzono, że we wszystkich systemach uprawy największy strumień emisji substancji czynnych do środowiska stanowiła ilość substancji dostępnych do wymywania i spływu powierzchniowego, a następnie emisje do powietrza i wód gruntowych. Głównym źródłem emisji ze stosowanych środków ochrony roślin były herbicydy. W gospodarstwach z produkcją kukurydzy na ziarno w siewie bezpośrednim, w związku z większym wykorzystaniem herbicydów, obserwowano większe zagrożenie toksycznego działania na ekosystem wody słodkiej niż w gospodarstwach z uprawą płużną i uproszczoną.

 

The aim of the study was to assess the impact of the use of plant protection products on the freshwater ecosystem in the production of maize for grain in different soil tillage systems. The analyzes were performed on the basis of data on chemical protection of maize in conventional tillage, reduced tillage and direct sowing. The data were obtained from 15 selected farms located in the Wielkopolskie Voivodeship. The studies were conducted in accordance with the life cycle assessment methodology. Using the PestLCI 2.08 model, emissions to the environment from the use of plant protection products were determined. The calculated emissions were used to assess the freshwater ecotoxicity potential using the USEtox 2.02 model. It was found that in all soil tillage systems, the largest stream of emissions of active substances to the environment was the amount of substances available for leaching and surface runoff, followed by emissions to air and emissions to groundwater. Herbicides were the main source of emissions from plant protection products used. A greater threat of toxic effects on the freshwater ecosystem was observed on farms producing maize for grain in direct sowing due to the greater use of herbicides than on farms with conventional and reduced tillage.

Słowa kluczowe
kukurydza; uprawa roli; środki ochrony roślin; ekotoksyczność; woda; maize; soil tillage; plant protection products; ecotoxicity; water
Referencje

Bernardes M.F.F., Pazin M., Pereira L.C., Dorta D.J. 2015. Impact of pesticides on environmental and human health. s. 195–233. W: Toxicology Studies-Cells, Drugs and Environment (A.C. Andreazza, G. Scola, red.). InTech, London, United Kingdom, 244 ss. DOI: 10.5772/59710

 

Birkved M., Hauschild M.Z. 2006. PestLCI – a model for estimating field emissions of pesticides in agricultural LCA. Ecological Modelling 198 (3): 433–451. DOI: 10.1016/j.ecolmodel.2006.05.035

 

Dijkman T.J., Birkved M., Hauschild M. 2012. PestLCI 2.0: a second generation model for estimating emissions of pesticides from arable land in LCA. International Journal of Life Cycle Assessment 17: 973–986. DOI: 10.1007/s11367-012-0439-2

 

EU Pesticides Database 2022. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances [dostęp: 20.12.2022].

 

Fan J., Liu C., Xie J., Han L., Zhang C., Guo D., Niu J., Jin H., McConkey B. 2022. Life cycle assessment on agricultural production: a mini review on methodology, application, and challenges. International Journal of Environmental Research and Public Health 19 (16): 9817. DOI: 10.3390/ijerph19169817

 

Fantin V., Righi S., Rondini I., Masoni P. 2017. Environmental assessment of wheat and maize production in an Italian farmers’cooperative. Journal of Cleaner Production 140 (2): 631–643. DOI: 10.1016/j.jclepro.2016.06.136

 

FAO 2022. The state of the world’s land and water resources for food and agriculture – systems at breaking point. Main report. Food and Agriculture Organization of the United Nations, Rome, Italy, 393 ss.

 

Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O’Connell C., Ray D.K., West P.C., Balzer C., Bennett E.M., Carpenter S.R., Hill J., Monfreda C., Polasky S., Rockström J., Sheehan J., Siebert S., Tilman D., Zaks D.P.M. 2011. Solutions for a cultivated planet. Nature 47 (7369): 337–342. DOI: 10.1038/nature10452

 

Hallmann C.A., Sorg M., Jongejans E., Siepel H., Hofland N., Schwan H., Stenmans W., Müller A., Sumser H., Hörren T., Goulson D., de Kroon H. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12 (10): e0185809. DOI: 10.1371/journal.pone.0185809

 

Heldbjerg H., Sunde P., Fox A.D. 2018. Continuous population declines for specialist farmland birds 1987–2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird Conservation International 28 (2): 278–292. DOI: 10.1017/S0959270916000654

 

Henderson A.D., Hauschild M.Z., van de Meent D., Huijbregts M.A.J., Larsen H.F., Margni M., McKone T.E., Payet J., Rosenbaum R.K., Jolliet O. 2011. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. International Journal of Life Cycle Assessment 16: 701. DOI: 10.1007/s11367-011-0294-6

 

Holka M. 2017. Environmental impact assessment of chemical plant protection in intensive crop production. Journal of Central European Agriculture 18 (3): 529–541. DOI: 10.5513/JCEA01/18.3.1926

 

Holka M., Bieńkowski J. 2020. Assessment of toxicity impacts of chemical protection of winter wheat, sugar beet and winter rape on aquatic ecosystems and humans. Zemdirbyste 107 (2): 131–138. DOI: 10.13080/z-a.2020.107.017

 

Holka M., Bieńkowski J., Jankowiak J., Dąbrowicz R. 2017. Life cycle assessment of grain maize in intensive, conventional crop production system. Romanian Agricultural Research 34: 301–310.

 

Holka M., Kowalska J., Jakubowska M. 2022. Reducing carbon footprint of agriculture – can organic farming help to mitigate climate change? Agriculture 12 (9): 1383. DOI: 10.3390/agriculture12091383

 

Kanianska R. 2016. Agriculture and its impact on land‐use, environment, and ecosystem services. s. 3–26. W: Landscape Ecology – The Influences of Land Use and Anthropogenic Impacts of Landscape Creation (A. Almusaed, red.). InTech, London, United Kingdom, 140 ss. ISBN 978-953-51-2513-6. DOI: 10.5772/63719

 

Korbas M., Horoszkiewicz-Janka J., Jajor E. 2008. Uproszczone systemy uprawy a występowanie sprawców chorób. [Simplified systems of soil management in relation to the occurrence of disease casual agents]. Progress in Plant Protecion/Postępy w Ochronie Roślin 48 (4): 1431–1438.

 

Kowalska J. 2010. Spinosad effectively controls Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) in organic potato. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science 60 (3): 283–286. DOI: 10.1080/09064710902934205

 

Kowalska J., Tyburski J., Bocianowski J., Krzymińska J., Matysiak K. 2020. Methods of silicon application on organic spring wheat (Triticum aestivum L. spp. vulgare) cultivars grown across two contrasting precipitation years. Agronomy 10 (11): 1655. DOI: 10.3390/agronomy10111655

 

Krasowicz S., Matyka M. 2020. Regionalne zróżnicowanie towarowości polskiego rolnictwa. [Regional diversification of marketability of Polish agriculture]. Studia i Raporty IUNG-PIB 62 (16): 9–34. DOI: 10.26114/sir.iung.2020.62.01

 

Księżak J., Bojarszczuk J., Staniak M. 2018. Comparison of maize yield and soil chemical properties under maize (Zea mays L.) grown in monoculture and crop rotation. Journal of Elementology 23 (2): 531–543. DOI: 10.5601/jelem.2017.22.3.1453

 

Nemecek T., Antón A., Basset-Mens C., Gentil C., Renaud-Gentié C., Melero C., Naviaux P., Peña N., Roux P., Fantke P. 2022. Operationalising emission and toxicity modelling of pesticides in LCA: the OLCA-Pest project contribution. International Journal of Life Cycle Assessment 27: 527–542. DOI: 10.1007/s11367-022-02048-7

 

Nordborg M., Cederberg C., Berndes G. 2014. Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production: the cases of maize, rapeseed, Salix, soybean, sugar cane, and wheat. Environmental Science and Technology 48 (19): 11379–11388. DOI: 10.1021/es502497p

 

Nordborg M., Davis J., Cederberg C., Woodhouse A. 2017. Freshwater ecotoxicity impacts from pesticide use in animal and vegetable foods produced in Sweden. Science of The Total Environment 581–582: 448–459. DOI: 10.1016/j.scitotenv.2016.12.153

 

Pathak V.M., Verma V.K., Rawat B.S., Kaur B., Babu N., Sharma A., Dewali S., Yadav M., Kumari R., Singh S., Mohapatra A., Pandey V., Rana N., Cunill J.M. 2022. Current status of pesticide effects on environment, human health and it’s ecofriendly management as bioremediation: A comprehensive review. Frontiers in Microbiology 13: 962619. DOI: 10.3389/fmicb.2022.962619

 

Piwowar A. 2021. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. Environmental Science and Pollution Research International 28 (21): 26628–26642. DOI: 10.1007/s11356-020-12283-w

 

PKN 2009a. PN-EN ISO 14040:2009. Zarządzanie środowiskowe. Ocena cyklu życia. Zasady i struktura. Polski Komitet Normalizacyjny, Warszawa.

 

PKN 2009b. PN-EN ISO 14044:2009. Zarządzanie środowiskowe. Ocena cyklu życia. Wymagania i wytyczne. Polski Komitet Normalizacyjny, Warszawa.

 

Renaud-Gentié C., Dijkman T.J., Bjørn A., Birkved M. 2015. Pesticide emission modelling and freshwater ecotoxicity assessment for grapevine LCA: adaptation of PestLCI 2.0 to viticulture. International Journal of Life Cycle Assessment 20: 1528–1543. DOI: 10.1007/s11367-015-0949-9

 

Rosenbaum R., Anton A., Bengoa X., Bjørn A., Brain R., Bulle C., Cosme N., Dijkman T., Fantke P., Felix M., Geoghegan T., Gottesbüren B., Hammer C., Humbert S., Jolliet O., Juraske R., Lewis F., Maxime D., Nemecek T., Payet J., Räsänen K., Roux P., Schau E., Sourisseau S., van Zelm R., von Streit B., Wallman M. 2015. The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. International Journal of Life Cycle Assessment 20: 765–776. DOI: 10.1007/s11367-015-0871-1

 

Rosenbaum R.K., Bachmann T.M., Swirsky Gold L., Huijbregts M.A.J., Jolliet O., Juraske R., Koehler A., Larsen H.F., Macleod M., Margni M., McKone T.E., Payet J., Schuhmacher M., van de Meent D., Hauschild M.Z. 2008. USEtox – the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. International Journal of Life Cycle Assessment 13 (7): 532–546. DOI: 10.1007/s11367-008-0038-4

 

Sánchez-Bayo F., Wyckhuys K.A.G. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232: 8–27. DOI: 10.1016/j.biocon.2019.01.020

 

Saouter E., Aschberger K., Fantke P., Hauschild M.Z., Bopp S.K., Kienzler A., Paini A., Pant R., Secchi M., Sala S. 2017. Improving substance information in USEtox®, part 1: discussion on data and approaches for estimating freshwater ecotoxicity effect factors. Environmental Toxicology and Chemistry 36 (12): 3450–3462. DOI: 10.1002/etc.3889

 

Schäffer A., Filser J., Frische T., Gessner M., Köck W., Kratz W., Liess M., Nuppenau E.-A., Roß-Nickoll M., Schäfer R., Scheringer M. 2018. The silent spring – on the need for sustainable plant protection. Leopoldina Discussions 16, 61. www.leopoldina.org/uploads/tx_leopublication/2018_Diskussionspapier_Pflanzenschutzmittel_EN_02.pdf [dostęp: 10.10.2022].

 

Schäfer R.B., van den Brink P.J., Liess M. 2011. Impacts of pesticides on freshwater ecosystems. s. 111–137. W: Ecological Impacts of Toxic Chemicals (F. Sanchez-Bayo, P. van den Brink, R.M. Mann, red.). Bentham, Bussum, Netherlands, 281 ss.

 

Smagacz J. 2016. Konsekwencje organizacyjne i środowiskowe różnych systemów uprawy roli. [Organizational and environmental consequences of different soil tillage systems]. Studia i Raporty IUNG-PIB 47 (1): 139–153. DOI: 10.26114/sir.iung.2016.47.08

 

Smagacz J. 2018. Uwarunkowania i tendencje zmian technik uprawy roli. [Conditions and tendencies of changes in soil tillage techniques]. Studia i Raporty IUNG-PIB 55 (9): 143–162. DOI: 10.26114/sir.iung.2018.55.08

 

Smagacz J. 2020. Kierunki rozwoju różnych systemów uprawy roli w warunkach zmieniającego się klimatu. [Development directions of different soil tillage systems in changing climate conditions]. Studia i Raporty IUNG-PIB 62 (16): 149–167. DOI: 10.26114/sir.iung.2020.62.08

 

Viana C.M., Freire D., Abrantes P., Rocha J., Pereira P. 2021. Agricultural land systems importance for supporting food security and sustainable development goals: a systematic review. Science of The Total Environment 806 (3): 150718. DOI: 10.1016/j.scitotenv.2021.150718

 

Wepprich T., Adrion J.R., Ries L., Wiedmann J., Haddad N.M. 2019. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14 (7): e0216270. DOI: 10.1371/journal.pone.0216270

 

Woodcock B., Isaac N., Bullock J., Roy D.B., Garthwaite D.G., Crowe A., Pywell R.F. 2016. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications 7: 12459. DOI: 10.1038/ncomms12459

 

Yang Y., Suh S. 2015. Changes in environmental impacts of major crops in the US. Environmental Research Letters 10 (9): 094016. DOI: 10.1088/1748-9326/10/9/094016

Progress in Plant Protection (2023) 63: 21-28
Data pierwszej publikacji on-line: 2023-01-17 10:21:43
http://dx.doi.org/10.14199/ppp-2023-002
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy