Progress in Plant Protection

“Priming”, readiness of plants to defend themselves against pests and pathogens
„Priming”, gotowość roślin do obrony przed szkodnikami i patogenami 

Dariusz Piesik, e-mail: piesik@utp.edu.pl

Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Katedra Entomologii i Fitopatologii Molekularnej , Kordeckiego 20, 85-225 Bydgoszcz , Polska
Abstract

Plants are exposed to contact with a number of pathogenic organisms, whose influence leads to disturbances in their normal functioning. The greatest physiological changes, loss of yielding and lower quality crops are caused by insect pests, and also viruses and fungi. However, plants have developed a whole range of defense capabilities resulting from an exposure e.g. to pests. Infestation by plant pathogens or attack by herbivores induce the unique physiological state of the plant, which is called “priming”. This state may also be induced by treatment of the plants of different kinds of natural or synthetic compounds. Previously treated plants may' react faster and stronger in the activation of defense mechanisms. In fact, “priming” is responsible for the preparation of plant defense. Volatile organic compounds may be recognized as the factors, which influence on this phenomenon. Neighboring plants receive these signals and in consequence are better prepared to defense, because it begins before the attack of pest or pathogen.


Rośliny są narażane na kontakt z licznymi organizmami chorobotwórczymi, których oddziaływanie prowadzi do zaburzeń w ich prawidłowym funkcjonowaniu. Największe zmiany fizjologiczne, straty w plonowaniu i obniżenie jakości plonów, wywołują szkodniki z gromady owadów, a także wirusy i grzyby. Rośliny wykształciły jednak cały arsenał możliwości obronnych, indukowanych w następstwie kontaktu np. ze szkodnikami. Porażenie roślin przez patogeny lub atak ze strony roślinożerców powodują indukcję unikalnego stanu fizjologicznego roślin, jakim jest „priming”. Ten stan może być również wzbudzany przez traktowanie roślin różnego rodzaju związkami naturalnymi lub syntetycznymi. Rośliny poddane uprzednio „primingowi” reagują szybciej i silniej w aktywacji mechanizmów obronnych. W efekcie „priming” odpowiada za przygotowanie roślin do obrony. Czynnikami wpływającymi na to zjawisko mogą być lotne związki organiczne wydzielane przez rośliny uszkadzane. Rośliny sąsiednie natomiast odbierają te sygnały i w konsekwencji są lepiej przygotowane do obrony, gdyż zanim nastąpi atak szkodnika lub patogena zaczyna się obrona. 


Key words
volatile organic compounds; activation of plant defense mechanism;  lotne związki organiczne; aktywacja mechanizmu obronnego roślin
References

Ahmad S., Gordon-Weeks R., Pickett J., Ton J. 2010. Natural variation in primingof basal resistance: from evolutionary origin to agricultural exploitation. Molecular Plant Pathology 11: 817–827.

Ahn I.-P., Kim S., Lee Y.-H., Suh S.-C. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology 143: 838–848.

Ali M., Sugimoto K., Ramadan A., Arimura G. 2013. Memory of plant communications for priming anti-herbivore responses. Science Reports 3 (1872): 1–5.

Arimura G., Shiojiri K., Karban R. 2010. Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry 71: 1642–1649.

Asensi-Fabado M.A., Oliván A., Munné-Bosch S. 2013. A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany 94: 57–65.

Baldwin I.T. 2010. Plant volatiles. Current Biology 20 (9): 1–6.

Baldwin I.T., Halitschke R., Paschold A., von Dahl C.C., Preston C.A. 2006. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311: 812–815.

Ballaré C.L. 2011. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends in Plant Science 16 (5): 249–257.

Bird A. 2007. Perception of epigenetics. Nature 447: 396–398.

Boczek J., Kiełkiewicz M., Kaczmarczyk A. 2013. Lotne związki emitowane z roślin zasiedlonych przez fitofagi i ich znaczenie w integrowanej ochronie. [Herbivore‐induced plant volatiles and their potential role in integrated pest management]. Progress in Plant Protection/Postępy w Ochronie Roślin 53 (4): 661–667.

Boyle C., Walters D.R. 2006. Saccharin-induced resistance to powdery mildew in barley: effects on growth and phenylpropanoid metabolism. Plant Pathology 55: 82–91.

Bruce T.J.A., Matthes M.C., Napier J.A., Pickett J.A. 2007. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science 173: 603–608.

Cendán C., Sampedro L., Zas R. 2013. The maternal environment determines the timing of germination in Pinus pinaster. Environmental and Experimental Botany 94: 66–72.

Chen K., Arora R. 2013. Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany 94: 33–45.

Choh Y., Takabayashi J. 2006. Herbivore-induced extrafloral nectar production in lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. Journal of Chemical Ecology 32: 2073–2077.

Cohen Y.R. 2002. β-Aminobutyric acid-induced resistance against plant pathogens. Plant Disease 86: 448–457.

Conrath U. 2006. Systemic acquired resistance. Plant Signal and Behavior 1: 179–184.

Conrath U. 2011. Molecular aspects of defence priming. Trends in Plant Science 16 (10): 524–531.

Conrath U., Beckers G.J.M., Flors V., García-Agustín P., Jakab G., Mauch F., Newman M.-A., Pieterse C.M.J., Poinssot B., Pozo Maria J., Pugin A., Schaffrath U., Ton J., Wendehenne D., Zimmerli L., Mauch-Mani B. 2006. Priming: getting ready for battle. Molecular Plant-Microbe Interactions 19: 1062–1071.

De Moraes C.M., Schultz J.C., Mescher M.C., Tumlinsoni J.H. 2004. Induced plant signaling and its implications for environmental sensing. Journal of Toxicology and Environmental Health 67: 819–834.

Dicke M. 2009. Behavioural and community ecology of plants that cry for help. Plant Cell and Environment 32: 654–665.

Dudareva N., Negre F., Nagegowda D.A., Orlova I. 2006. Plant volatiles: recent advances and future perspectives. CRC Critical Reviews in Plant Science 25: 417–440.

Engelberth J., Alborn H.T., Schmelz E.A., Tumlinson J.H. 2004. Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Science of the United States of America 101: 1781–1785.

Erb M., Ton J., Degenhardt J., Turlings T.C.J. 2008. Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiology 146: 867–874.

Flors V., Ton J., van Doorn R., Jakab G., Garcia-Agustin P., Mauch-Mani B. 2008. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant Journal 54: 81–92.

Frost C.J., Appel H.M., Carlson J.E., DeMoraes C.M., Mescher M.C., Schultz J.C. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecology Letters 10: 490–498.

Frost Ch.J., Mescher M.C., Carlson J.E., De Moraes C.M. 2008. Plant Defense Priming against Herbivores: Getting Ready for a Different Battle. Plant Physiology 146: 818–824.

Goellner K., Conrath U. 2008. Priming: its all the world to induced disease resistance. European Journal of Plant Pathology 121: 233–242.

Grativol C., Hemerly A.S., Ferreira P.C. 2012. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochimica et Biophysica Acta 1819 (2): 176–185.

Hirao T., Okazawa A., Harada K., Kobayashi A., Muranaka T., Hirata K. 2012. Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. Journal of Bioscience and Bioengineering 114 (5): 540–545.

Heil M., Karban R. 2010. Explaining evolution of plant communication by airborne signals. Trends in Ecology and Evolution 25: 137–144.

Heil M., Silva Bueno J.C. 2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defence in nature. Proceedings of the National Academy of Science of the United States of America 104: 5467–5472.

Heil M., Ton J. 2008. Long-distance signalling in plant defence. Trends in Plant Science 13: 264–272.

Howe G.A. 2004. Jasmonates as signals in the wound response. Journal of Plant Growth Regulation 23: 223–237.

Jung H.W., Tschaplinski T.J., Wang L., Glazebrook J., Greenberg J.T. 2009. Priming in systemic plant immunity RID D-4021-2009. Science 324: 89–91.

Karban R., Shiojiri K. 2009. Self-recognition affects plant communication and defense. Ecology Letters 12: 502–506.

Karban R., Shiojiri K., Ishizaki S. 2010. An air transfer experiment confirms the role of volatile cues in communication between plants. American Naturalist 176: 381–384.

Kessler A., Halitschke R., Diezel C., Baldwin I.T. 2006. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148: 280–292.

Kohler A., Schwindling S., Conrath U. 2002. Benzothiadiazole- induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiology 128: 1046–1056.

Korves T., Bergelson J. 2004. A novel cost of R gene resistance in the presence of disease. American Naturalist 163: 489–504.

Mirabella R., Rauwerda H., Struys E.A., Jakobs C., Triantaphylidès C., Haring M.A., Schuurink R.C. 2008. The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. Plant Joural 53: 197–213.

Miranda M., Ralph S.G., Mellway R., White R., Heath M.C., Bohlmann J., Constabel C.P. 2007. The transcriptional response of hybrid poplar (Populus trichocarpa × P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Molecular Plant-Microbe Interactions 20: 816–831.

Muroi A., Ramadan A., Nishihara M., Yamamoto M., Ozawa R., Takabayashi J., Arimura G. 2011. The composite effect of transgenic plant volatiles for acquired immunity to herbivory caused by inter-plant communications. PLoS One 6: 24594.

Newmann M.-A., Dow J.M., Molinaro A., Parrilli M. 2007. Priming, induction and modulation of plants defence responses by bacterial lipopolysaccharides. Journal of Endotoxin Research 13: 69–84.

Ngi-Song A.J., Njagi P.G.N., Torto B., Overholt W.A. 2002. Identification of behaviourally active components from maize volatiles for the stemborer parasitoid Cotesia flavipes Carneron (Hymenoptera: Braconidae). Insect Science and its Application 20: 181–189.

Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. 2013. Primed plants do not forget. Environmental and Experimental Botany 94: 46–56.

Piesik D. 2008. Wpływ żerowania larw i chrząszczy skrzypionki zbożowej (Oulema melanopus L., Coleoptera: Chrysomelidae) na wydzielanie lotnych związków organicznych przez pszenicę (Triticum aestivum L. emend Fiori et Paol.) oraz reakcja imagines na te komponenty. Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego w Bydgoszczy, Rozprawy nr 131, 88 ss.

Puente M.E., Kennedy G.G., Gould F. 2008. The impact of herbivore-induced plant volatiles on parasitoid foraging success: a general deterministic model. Journal of Chemical Ecology 34: 945–958.

Sauter H. 2007. Strobilurins and other complex III inhibitors. p. 341–366. In: “Modern Crop Protection Compounds“ (W. Krämer, U. Schirmer, eds.). Weinheim: VCH-Wiley.

Schaub A., Blande J.D., Graus M., Oksanen E., Holopainen J.K., Hansel A. 2010. Real-time monitoring of herbivore induced volatile emissions in the field. Physiologia Plantarum 138: 123–133.

Shao H.B., Chu L.Y., Zhao C.X., Guo Q.J., Liu X.A., Ribaut J.M. 2006. Plant gene regulatory network system under abiotic stress. Acta Biologica Szegediensis 50: 1–9.

Smith C.M., Boyko E.V. 2007. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata 122: 1–16.

Tardif G., Kane N.A., Adam H., Labrie L., Major G., Gulick P., Sarhan F., Laliberte J.F. 2007. Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Molecular Biology 63: 703–718.

Thines B., Katsir L., Melotto M., Niu Y., Mandaokar A., Liu G.H., Nomura K., He S.Y., Howe G.A., Browse J. 2007. JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature 448: 661–662.

Ton J., D'Alessandro M., Jourdie V., Jakab G., Karlen D., Held M., Mauch-Mani B., Turlings T.C. 2006. Priming by airborne signals boosts direct and indirect resistance in maize. Plant Journal 49: 16–26.

van Hulten M., Pelser M., van Loon L.C., Pieterse C.M.J., Ton J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Science of the United States of America 103: 5602–5607.

van Wees S.C.M., van der Ent S., Pieterse C.M.J. 2008. Plant immune responsestriggered by beneficial microbes RID B-8595-2011 RID A-9326-2011. Current Opinion in Plant Biology 11: 443–448.

Walters D.R., Paterson L., Walsh D.J., Havis N.D. 2009. Priming for plant defense in barley provides benefits only under high disease pressure. Physiological and Molecular Plant Pathology 73: 95–100.

Wu G., Shao H.B., Chu L.Y., Cai J.W. 2007. Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agronomy for Sustainable Development 27: 69–78.

Progress in Plant Protection (2015) 55: 183-188
First published on-line: 2015-03-24 08:10:52
http://dx.doi.org/10.14199/ppp-2015-030
Full text (.PDF) BibTeX Mendeley Back to list