Chlorophyll a + b content in leaves of spring barley after MCPA and selected HILs application
Zawartość chlorofilu a + b w liściach jęczmienia jarego po zastosowaniu MCPA oraz wybranych HILs
Marcin Grobela, e-mail: grobela@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaAbstract |
The aim of the study was to examine the effect of spraying two herbicidal ionic liquid forms of MCPA (HILs – [Etq O-12][MCPA], [DDA][MCPA]) on chlorophyll a + b content in leaves of spring barley (Hordeum vulgare L.). Spectrophotometric method was used to measure chlorophyll a + b content 24 and 72 h after fields were sprayed. The data was compared to controls that consisted of the treatments using a commercial formulation of MCPA as a salt or ester. The field studies revealed that after 24 h of MCPA as a salt spraying chlorophyll a + b content in spring barley was lower by 12% and after 72 h by 18%. The application of MCPA as an ester lowered the chlorophyll a + b amount by just 9%, as a HILs resulted in decrease by about 3% compared to control plots. The results do not confirm a significant impact on the content of photosynthetic pigments in spring barley, but they show that the application of HILs as an alternative herbicide can reduce the undesirable effects of MCPA. Celem prowadzonych badań była spektrofotometryczna ocena zmian zawartości chlorofilu w liściach jęczmienia jarego po 24 i 72 h od zastosowanego opryskiwania powszechnie stosowanymi środkami ochrony roślin na bazie MCPA (Chwastox Extra 300 SL, Chwastox AS 600 EC) oraz wybranymi herbicydowymi cieczami jonowymi HILs ([Etq O-12][MCPA], [DDA][MCPA]). Poziom chlorofilu a + b w jęczmieniu jarym po 24 h, na który zaaplikowano MCPA w postaci soli był niższy o 12%, a po 72 h aż o 18% w porównaniu do stężenia barwników roślin z poletek kontrolnych. Po aplikacji MCPA w postaci estru zawartość chlorofilu a + b również była niższa, ale tylko o około 9%. Zabiegi przeprowadzone wyłącznie HILs powodowały jego bardzo małe spadki wynoszące około 3%. Uzyskane wyniki nie potwierdzają istotnego wpływu stosowania MCPA na zawartość pigmentów fotosyntetycznych w jęczmieniu jarym, jednak pokazują, że aplikacja HILs jako herbicydu alternatywnego może ograniczyć niepożądane efekty jego działania. |
Key words |
chlorophyll; herbicidal ionic liquids; MCPA; spring barley; chlorofil; herbicydowe ciecze jonowe; jęczmień jary |
References |
Arnon D.I., Allen M.B., Whatley F.R. 1956. Photosynthesis by isolated chloroplasts IV. General concept and comparison of three photochemical reactions. Biochimica et Biophysica Acta 20: 449–461.
Bates D., Maechler M., Bolker B., Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (1): 1–48.
Ceylan Y., Kutman U.B., Mengutay M., Cakmak I. 2016. Magnesium applications to growth medium and foliage affect the starch distribution, increase the grain size and improve the seed germination in wheat. Plant Soil 406 (1–2): 145–156.
Devine M.D., Shukla A. 2000. Altered target sites as a mechanism of herbicide resistance. Crop Protection 19 (8–10): 881–889.
Ekmekci Y., Terzioglu S. 2005. Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pesticide Biochemistry and Physiology 83 (2–3): 69–81.
Grobela M. 2016. Differences in the uptake of Mn, Zn, and Cu by Hordeum vulgare L. following applications of MCPA-based herbicides and their ionic liquid forms. Polish Journal of Environmental Studies 25 (5): 1931–1936.
Hough W.L., Smiglak M., Rodríguez H., Swatloski R.P., Spear S.K., Daly D.T., Pernak J., Grisel J.E., Carliss R.D., Soutullo M.D., Davis J.H. Jr., Rogers R.D. 2007. The third evolution of ionic liquids: active pharmaceutical ingredients. New Journal of Chemistry 31 (8): 1429–1436.
Kobyłecka J., Skiba E. 2008. The effect of phenoxyacetic herbicides on the uptake of copper, zinc and manganese by Triticum aestivum L. Polish Journal of Environmental Studies 17 (6): 895–901.
Lenth R.V. 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software 69: 1–33.
Lichtenthaler H.K., Wellburn A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11 (5): 591–592.
Łozowicka B., Wołejko E., Konecki R. 2016. Influence of selected active substances of fungicides and herbicides and time of their application on chlorophyll content in Triticum aestivum L. [Wpływ wybranych substancji czynnych fungicydów, herbicydów i ich terminów aplikacji na poziom barwników asymilacyjnych w Triticum aestivum L.]. Progress in Plant Protection 56 (2): 186–190.
Pernak J., Niemczyk M., Zakrocka K., Praczyk T. 2013. Herbicidal ionic liquid with dual-function. Tetrahedron 69 (38): 8132–8136.
Pernak J., Syguda A., Janiszewska D., Materna K., Praczyk T. 2011. Ionic liquids with herbicidal anions. Tetrahedron 67 (26): 4838–4844.
Politycka B. 2007. Plant productivity. Produktywność roślin. s. 353–372. W: „Fizjologia roślin – od teorii do nauk stosowanych” (M. Kozłowska, red.). PWRiL, Poznań, 544 ss.
Praczyk T., Kardasz P., Jakubiak E., Syguda A., Materna K., Pernak J. 2012. Herbicidal ionic liquids with 2,4-D. Weed Science 60 (2): 189–192.
R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org [Accessed: 14.12.2016].
Shamshina J.L., Kelley S.P., Gurau G., Rogers R.D. 2015. Chemistry: Develop ionic liquid drugs. Nature 528 (7581): 188–189.
Starck Z. 2008. Stresses provoked by incorrect nitrogen nutrition in plants. [Stresy wynikające z nieprawidłowego odżywiania roślin azotem]. Postępy Nauk Rolniczych 60 (1): 27–42.
Tatagiba S.D., DaMatta F.M., Rodrigues F.A. 2016. Magnesium decreases leaf scald symptoms on rice leaves and preserves their photosynthetic performance. Plant Physiology and Biochemistry 108: 49–56.
Tatarková V., Hiller E., Vaculík M. 2013. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and Environmental Safety 92: 215–221.
Tränkner M., Jákli B., Tavakol E., Geilfus Ch., Cakmak I., Dittert K., Senbayram M. 2016. Magnesium deficiency decreases biomass water-use efficiency and increases leaf water-use efficiency and oxidative stress in barley plants. Plant Soil 406 (1–2): 409–423.
Wang M., Zhou Q. 2006. Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety 64 (2): 190–197.
Žaltauskaitė J., Brazaitytė V. 2013. Assessment of the effects of sulfonylureas herbicide midosulfuron application on target and non-target organisms. Fresenius Environmental Bulletin 22 (7 A): 1977–1982.
Žaltauskaitė J., Kišonaitė G. 2014. The effects of phenoxy herbicide MCPA on non-target vegetation in spring wheat (Triticum aestivum L.) culture. Biologija 60 (3): 148–154. |
Progress in Plant Protection (2017) 57: 70-74 |
First published on-line: 2017-03-03 11:10:37 |
http://dx.doi.org/10.14199/ppp-2017-012 |
Full text (.PDF) BibTeX Mendeley Back to list |