Progress in Plant Protection

Comparison of the usefulness of miscanthus, spartina and Jerusalem artichoke for phytoremediation of soils contaminated with nickel
Porównanie przydatności miskanta, spartiny i topinamburu do fitoremediacji gleb skażonych niklem 

Jolanta Korzeniowska, e-mail:

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy w Puławach, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska

Ewa Stanisławska-Glubiak, e-mail:

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy w Puławach, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska

Aleksander Mickiewicz, e-mail:

Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy w Puławach, Zakład Herbologii i Technik Uprawy Roli, Orzechowa 61, 50-540 Wrocław, Polska

The response of miscanthus (Miscanthus × giganteus), spartina (Spartina pectinata) and Jerusalem artichoke (Helianthus tuberosus) to nickel (Ni) excess in contaminated soil was tested in the two-year microplot experiment. The microplots, with a surface of 1 m2 and deep of 1 m, were filled with sandy soil, artificially contaminated with nickel at the following doses: 0 (control without Ni), Ni1 – 60, Ni2 – 100 and Ni3 – 240 mg/kg. Plant tolerance to nickel toxicity and their ability to Ni accumulation, and translocation were evaluated using a tolerance index (TI), bioaccumulation factors (BF) and translocation factor (TF). It was found that none of the tested species was suitable for phytoextraction nor showed high phytostabilization potential of nickel. Among the tested plants, spartina demonstrated the highest tolerance to Ni (70%), relatively high ability to Ni accumulation in the roots and limited transport of Ni from roots to aboveground parts.

W dwuletnim doświadczeniu mikropoletkowym testowano reakcję miskanta (Miscanthus × giganteus), spartiny (Spartina pectinata) i topinamburu (Helianthus tuberosus) na nadmiar Ni w glebie. Obetonowane mikropoletka o powierzchni 1 m2 i głębokości 1 m wypełniono glebą lekką, sztucznie skażoną Ni w następujących dawkach: 0 (kontrola bez dodatku Ni), Ni1 – 60, Ni2 – 100 i Ni3 – 240 mg/kg. Tolerancję roślin na Ni oraz ich zdolność akumulacji i translokacji Ni w częściach podziemnych i nadziemnych oceniano przy pomocy indeksu tolerancji (TI), współczynników bioakumulacji (BF) oraz współczynnika translokacji (TF). Stwierdzono, że żaden z testowanych gatunków nie nadawał się do fitoekstrakcji Ni z gleby ani nie wykazał wysokiego potencjału fitostabilizacyjnego w stosunku do gleby skażonej Ni. Spośród badanych gatunków roślin spartina wykazała najwyższą tolerancję na Ni (70%), stosunkowo dużą zdolność akumulacji Ni w korzeniach oraz ograniczony transport Ni do części nadziemnej.

Key words
soil contamination; Ni; phytostabilization; Miscanthus × giganteus; Spartina pectinata; Helianthus tuberosus; zanieczyszczenie gleby; fitostabilizacja

Adamo P., Dudka S., Wilson M.J., McHardy W.J. 2002. Distribution of trace elements in soils from the Sudbury smelting area (Ontario, Canada). Water, Air, and Soil Pollution 137 (1–4): 95–116. DOI: 10.1023/A:1015587030426.


Ahmad M.S.A., Ashraf M. 2011. Essential roles and hazardous effects of nickel in plants. p. 125–167. In: “Reviews of Environmental Contamination and Toxicology” (D.M. Whitacre, eds.). Springer International Publishing, 214 pp. DOI: 10.1007/978-1-4614-0668-6_6.


Al Chami Z., Amer N., Al Bitar L., Cavoski I. 2015. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. International Journal of Environmental Science and Technology 12: 3957–3970. DOI: 10.1007/s13762-015-0823-0.


Algreen M., Trapp S., Rein A. 2014. Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees. Environmental Science and Pollution Research 21 (15): 8992–9001. DOI: 10.1007/s11356-013-2085-z.


Ali M.B., Vajpayee P., Tripathi R.D., Rai U.N., Singh S.N., Singh S.P. 2003. Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss.: Role of antioxidant enzymes and antioxidant substances. Bulletin of Environmental Contamination and Toxicology 70: 462–469. DOI: 10.1007/s00128-003-0009-1.


Antonkiewicz J., Jasiewicz Cz., Koncewicz-Baran M., Sendor R. 2016. Nickel bioaccumulation by the chosen plant species. Acta Physiologiae Plantarum 38: 40–51. DOI: 10.1007/s11738-016-2062-5.


Bacon J.R., Dinev N.S. 2005. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria. Environmental Pollution 134: 247–255. DOI: 10.1016/j.envpol.2004.07.03.


Cambrolle J., Mateos-Naranjo E., Redondo-Gómez S., Luque T., Figueroa M.E. 2011. The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto–Odiel estuary (SW Spain). Hydrobiologia 671: 95–103. DOI: 10.1007/s10750-011-0706-4.


Cheraghi M., Lorestani B., Khorasani N., Yousef N., Karami M. 2011. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biological Trace Element Research 144 (1–3): 1133–1141. DOI: 10.1007/s12011-009-8359-0.


Fernando A., Oliveira J.S. 2004. Effects on growth, productivity and biomass quality of Miscanthus × giganteus of soils contaminated with heavy metals. 2nd World Conference on Biomass for Energy, Industry and Climate Protection. Italy, Rome, 10–14 May 2004,


Filipiak K., Wilkos S. 1995. Obliczenia statystyczne. Opis systemu AWAR. Wydawnictwo IUNG, Puławy, 52 ss.


Gaj R., Izosimova A., Shnug E. 2007. Organic fertilization effects on heavy metal uptake. p. 1169–1171. In: “Encyclopedia of Soil Science” Volume 2 (R. Lal, eds.). Taylor and Francis/CRC Press, Boca Raton, 2060 pp.


Ghosh M., Singh S.P. 2005. A review on phytoremediation of heavy metals and utilization of its by products. Applied Ecology and Environmental Research 3 (1): 1–18.


Golda S., Korzeniowska J. 2016. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium. Environmental Protection and Natural Resources 27 (1): 8–14. DOI: 10.1515/OSZN-2016-0003.


Kabata-Pendias A., Motowicka-Terelak T., Piotrowska M., Terelak H., Witek T. 1993. Ocena stopnia zanieczyszczenia gleb i roślin metalami ciężkimi i siarką. Ramowe wytyczne dla rolnictwa. Wydawnictwo IUNG, Puławy, P(53), 20 ss.


Kabata-Pendias A., Mukherjee A.B. 2007. Trace Elements from Soil to Human. Springer International Publishing, Berlin, Heidelberg, NewYork, 550 pp.


Kacálková L., Tlustoš P., Száková J. 2014. Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow, and poplar. Polish Journal of Environmental Studies 23 (3): 753–761.


Karczewska A., Lewinska K., Gałka B. 2013. Arsenic extractability and uptake by velvetgrass Holcus lanatus and ryegrass Lolium perenne in variously treated soils polluted by tailing spills. Journal of Hazardous Materials 262 (15): 1014–1021. DOI: 10.1016/j.jhazmat.2012.09.008.


Maksimovic I., Kastori R., Krstic L., Lukovic J. 2007. Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biologia Plantarum 51 (3): 589–592.


Mann J.J., Barney J.N., Kyser G.B., DiTomaso J.M. 2013. Root system dynamics of Miscanthus × giganteus and Panicum virgatum in response to rained and irrigated conditions in California. BioEnergy Research 6 (2): 678–687. DOI: 10.1007/s12155-012-9287-y.


Masarovicova E., Kralova K., Kummerova M. 2010. Principles of classification of medical plants as hyperaccumulators or excluders. Acta Physiologiae Plantarum 32 (5): 823–829. DOI: 10.1007/s11738-010-0474-1.


McGrath S.P., Zhao F.J. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology 14 (3): 277–282.


Melo E.E.C., Costa E.T.S., Guilherme L.R.G., Faquin V., Nascimento C.W.A. 2009. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials 168 (1): 479–483. DOI: 10.1016/j.jhazmat. .2009.02.048.


Mulligan C.N., Yong R.N., Gibbs B.F. 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology 60: 193–207. DOI: 10.1016/S0013-7952(00)00101-0.


Narendrula R., Nkongolo K.K., Beckett P. 2012. Comparative soil metal analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo). Bulletin of Environmental Contamination and Toxicology 88 (2): 187–192. DOI: 10.1007/s00128-011-0485-7.


Ngole V.M., Ekosse G.I.E. 2012. Copper, nickel and zinc contamination in soils within the precincts of mining and landfilling environments. International Journal of Environmental Science and Technology 9: 485–494. DOI: 10.1007/s13762-012-0055-5.


Raskin I., Ensley B.D. 2000. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons, New York, NY, USA, 304 pp.


Redondo-Gómez S. 2013. Bioaccumulation of heavy metals in Spartina. Functional Plant Biology 40 (9): 913–921. DOI: 10.1071/FP12271.


Roccotiello E., Manfredi A., Drava G., Minganti V., Mariotti M., Berta G., Cornara L. 2010. Zinc tolerance and accumulation in the ferns Polypodium cambricum L. and Pteris vittata L. Ecotoxicology and Environmental Safety 73: 1264–1271. DOI: 10.1016/j.ecoenv.2010.07.019.


Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Dz. U. 2016, poz. 1395.


Seregin I.V., Kozhevnikova A.D., Kazyumina E.M., Ivanov V.B. 2003. Nickel toxicity and distribution in maize roots. Russian Journal of Plant Physiology 50 (5): 711–717. DOI: 10.1023/a:1025660712475.


Shafeeq A., Butt Z.A., Muhammad S. 2012. Response of nickel pollution on physiological and biochemical attributes of wheat (Triticum aestivum L.) var. Bhakar-02. Pakistan Journal of Botany 44 (1): 111–116.


Srivastava N. 2016. Phytoremediation of heavy metals contaminated soils through transgenic plants. p. 345–391. In: “Phytoremediation” (A.A. Ansari, S.S. Gill, R. Gill, G.R. Lanza, L. Newman, eds.). Springer International Publishing, 566 pp.


Stanislawska-Glubiak E., Korzeniowska J., Kocon A. 2012. Effect of the reclamation of heavy metal-contaminated soil on growth of energy willow. Polish Journal of Environmental Studies 21 (1): 187–192.


Stanislawska-Glubiak E., Korzeniowska J., Kocon A. 2015. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environmental Science and Pollution Research 22 (6): 4706–4714. DOI: 10.1007/s11356-014-3706-x.


Thakur S., Singh L., Ab Wahid Z., Siddiqui M.F., Atnaw S.M., Din M.F.M. 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment 188 (4): 1–11. DOI: 10.1007/s10661-016-5211-9.


Tokar E.J., Benbrahim-Tallaa L., Waalkes M.P. 2011. Metal ions in human cancer development. Metal Ions in Life Sciences 8: 375–401.


Toth G., Hermann T., Da Silva M.R., Montanarella L. 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International 88: 299–309. DOI: 10.1016/j.envint.2015.12.017.


USDA, NRCS. 2014. The PLANTS Database (, 30 October 2014). National Plant Data Team, Greensboro, NC 27401-4901 USA.


WHO. Regional Office for Europe 2000. Air Quality Guidelines: Second Edition. Copenhagen, Denmark, 273 pp.


Willscher S., Jablonski L., Fona Z., Rahmi R., Wittig J. 2017. Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations. Hydrometallurgy 168: 153–158. DOI: org/10.1016/j.hydromet.2016.10.016.


Yusuf M., Fariduddin Q., Hayat S., Ahmad A. 2011. Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology 86 (1): 1–17. DOI: 10.1007/s00128-010-0171-1.

Progress in Plant Protection (2017) 57: 225-233
First published on-line: 2017-09-28 14:54:36
Full text (.PDF) BibTeX Mendeley Back to list