Znaczenie biostymulatorów w adaptacji słonecznika (Helianthus annuus L.) do warunków stresowych
Importance of biostimulants in sunflower (Helianthus annuus L.) adaptation to stress
Kinga Matysiak, e-mail: k.matysiak@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, PolskaJakub Zubek, e-mail: jakub.zubek@bdi.agro.pl
BDI-Agro , Koronowska 16, 86-022 Kotomierz, PolskaMonika Michel, e-mail: m.michel@iorpib.poznan.pl
Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Toruniu, Pigwowa 16, 87-100 Toruń, PolskaAbstract |
Słonecznik zwyczajny (Helianthus annuus L.) jest uprawiany w zróżnicowanych warunkach klimatycznych i charakteryzuje się wrażliwością na czynniki stresu abiotycznego, w tym głównie suszę, zasolenie, wysokie lub niskie temperatury oraz zanieczyszczenie metalami ciężkimi. Czynniki te, występujące zwłaszcza w krytycznych fazach rozwoju – kwitnienia i nalewania niełupek – prowadzą do zaburzeń fizjologicznych i metabolicznych, skutkując obniżeniem plonowania oraz jakości oleju. W ostatnich latach obserwuje się rosnące zainteresowanie wykorzystaniem egzogennie stosowanych biostymulatorów jako narzędzi wspomagających odporność słonecznika na niekorzystne warunki środowiskowe. Celem pracy był przegląd dostępnej literatury dotyczącej wpływu biostymulatorów na fizjologięi efektywność plonowania słonecznika w warunkach stresu abiotycznego. Uwzględniono działanie takich substancji, jak kwas salicylowy, kwas askorbinowy, jasmoniany, aminokwasy, tiamina, glicynobetaina oraz preparaty wieloskładnikowe. Analizowane związki wykazują zdolność do aktywacji mechanizmów obronnych, poprawy gospodarki wodnej, stabilizacji strukturalnej komórek oraz regulacji szlaków hormonalnych i enzymatycznych. Ich zastosowanie skutkuje zwiększoną tolerancją roślin na stres, poprawą parametrów morfologicznych i jakościowych oraz korzystnym wpływem na skład chemiczny nasion. Mimo rosnącej liczby badań, nadal brakuje jednoznacznych danych dotyczących optymalnych dawek, terminów aplikacji i mechanizmów molekularnych działania biostymulatorów. Dalsze badania, uwzględniające interakcje genotyp–środowisko–technologia, są niezbędne do pełnego wykorzystania potencjału biostymulacji w zrównoważonej uprawie słonecznika w warunkach zmian klimatycznych.
Common sunflower (Helianthus annuus L.), as a key oilseed crop cultivated across diverse climatic zones, is exposed to a wide range of abiotic stresses, including drought, salinity, extreme temperatures, and heavy metal contamination. These stressors, particularly when occurring during critical developmental stages – such as flowering and seed filling – lead to physiological and metabolic disturbances, ultimately resulting in yield reduction and diminished oil quality. In recent years, there has been growing interest in the use of exogenously applied biostimulants as a strategy to enhance sunflower resilience under adverse environmental conditions. The objective of this study was to review the available literature on the effects of biostimulants on physiology and yield performance of sunflower under abiotic stress. The review focused on substances such as salicylic acid, ascorbic acid, jasmonates, amino acids, thiamine, glycine betaine, and multi-component formulations. These compounds have been shown to activate plant defense mechanisms, improve water balance, stabilize cellular structures, and regulate hormonal and enzymatic pathways. Their application enhances stress tolerance, improves morphological and quality traits, and positively influences seed chemical composition. Despite the increasing volume of research, there remains a lack of conclusive data regarding optimal dosages, application timing, and molecular mechanisms of biostimulant action. Further studies accounting for genotype–environment–technology interactions are essential for the full exploitation of biostimulant potential in the sustainable cultivation of sunflower under changing climate conditions. |
Key words |
stres abiotyczny; susza; zasolenie; temperatura; zmiany klimatu; abiotic stress; drought; salinity; temperature; climate change |
References |
Abdallah M.M.S., Bakry B.A., El-Bassiouny H.M.S., El-Monem A.A.A. 2020. Growth, yield and biochemical impact of anti-transpirants on sunflower plant grown under water deficit. Pakistan Journal of Biological Sciences 23 (4): 454–466. DOI: 10.3923/pjbs.2020.454.466
Ahmed F., Baloch D.M., Sadiq S.A., Ahmed S.S., Hanan A., Taran S.A., Ahmed N., Hassan M.J. 2014. Plant growth regulators induced drought tolerance in sunflower (Helianthus annuus L.) hybrids. The Journal of Animal & Plant Sciences 24 (3): 886–890.
Andrade A., Castillo P., Vigliocco A., Alemano A., Abdala G. 2011. Sunflower responses to drought stress during early development. W: Sunflowers: Cultivation, Nutrition, and Biodiesel Uses (V.C. Hughes, red.). Science Publishers. ISBN 978-1-61761- 309-8.
Andrianasolo F.N., Debaeke P., Champolivier L., Maza E., Maury P. 2016. Analysis and modelling of the factors controlling seed oil content in sunflower: a review. OCL – Oilseeds and fats Crops and Lipids 23 (2): D206. DOI: 10.1051/ocl/2016004
Beltrano J., Caldiz D.O., Barreyro R., Vallduvi G.S., Bezus R. 1994. Effects of foliar applied gibberellic acid and benzyladenine upon yield components in sunflower (Helianthus annuus L.). Plant Growth Regulation 15: 101–106. DOI: 10.1007/ BF00024097
Bertolino L.T., Caine R.S., Gray J.E. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science 10: 225. DOI: 10.3389/fpls.2019.00225
Bourioug M., Ezzaza K., Bouabid R., Alaoui-Mhamdi M., Bungau S., Bourgeade P., Alaoui-Sossé L., Alaoui-Sossé B., Aleya L. 2020. Influence of hydro- and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research 27 (12): 13215–13226. DOI: 10.1007/s11356-020-07893-3
Brown P., Saa S. 2015. Biostimulants in agriculture. Frontiers in Plant Science 6: 671. DOI: 10.3389/fpls.2015.00671
Caine R.S., Harrison E.L., Sloan J., Flis P.M., Fischer S., Khan M.S., Nguyen P.T., Nguyen L.T., Gray J.E., Croft H. 2023. The influences of stomatal size and density on rice abiotic stress resilience. New Phytologist 237 (6): 2180–2195. DOI: 10.1111/ nph.18704
Calvo P., Nelson L., Kloepper J.W. 2014. Agricultural uses of plant biostimulants. Plant and Soil 383 (1): 3–41. DOI: 10.1007/ s11104-014-2131-8
Cojocaru F., Joiţa-Păcureanu M., Negoiță M., Mihai L., Popescu G., Ciornei L., Ion V., Anton G.F., Rîşnoveanu L., Oprea D., Bran A., Sava E. 2023. The impact of climatic conditions on oil content and quality in sunflower. Romanian Agricultural Research 40 (40): 1–9. DOI: 10.59665/rar4024
Corbineau F., Rudnicki R.M., Come D. 1988. The effects of methyl jasmonate on sunflower (Helianthus annuus L.) seed germination and seedling development. Plant Growth Regulation 7: 157–169. DOI: 10.1007/BF00028238
Damalas C.A., Koutroubas S.D. 2022. Exogenous application of salicylic acid for regulation of sunflower growth under abiotic stress: a systematic review. Biologia 77 (7): 1685−1697. DOI: 10.1007/s11756-022-01020-y
Di Caterina R., Giuliani M.M., Rotunno T., De Caro A., Flagella Z. 2007. Influence of salt stress on seed yield and oil quality of two sunflower hybrids. Annals of Applied Biology 151 (2): 145−154. DOI: 10.1111/j.1744-7348.2007.00165.x
Domaratskiy Y. 2021. Leaf area formation and photosynthetic activity of sunflower plants depending on fertilizers and growth regulators. Journal of Ecological Engineering 22 (6): 99–105. DOI: 10.12911/22998993/137361
Earley A.M., Nolting K.M., Burke J.M. 2023. Leaf traits predict performance under varying levels of drought stress in cultivated sunflower (Helianthus annuus L.). bioRxiv The preprint server for biology. DOI: 10.1101/2023.03.06.531401
Earley A.M., Temme A.A., Cotter C.R., Burke J.M. 2022. Genomic regions associate with major axes of variation driven by gas exchange and leaf construction traits in cultivated sunflower (Helianthus annuus L.). The Plant Journal 111 (5): 1425–1438. DOI: 10.1111/tpj.15900
El-Ramady H., Prokisch J., Mansour H., Bayoumi Y.A., Shalaby T.A., Veres S., Brevik E.C. 2024. Review of crop response to soil salinity stress: Possible approaches from leaching to nano-management. Soil Systems 8 (1): 11. DOI: 10.3390/soilsystems8010011
El-Tayeb M.A., El-Enany A.E., Ahmed N.L. 2006. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regulation 50 (2): 191–199. DOI: 10.1007/s10725-006-9118-2
Ernst D., Kovar M., Černý I. 2016. Effect of two different plant growth regulators on production traits of sunflower. Journal of Central European Agriculture 17 (4): 998–1012. DOI: 10.5513/JCEA01/17.4.1804
Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., Ihsan M.Z., Alharby H., Wu C., Wang D., Huang J. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8: 1147. DOI: 10.3389/fpls.2017.01147
FAOStat 2023. https://www.fao.org/faostat/en/#data/QCL [dostęp: 10.04.2025].
Ghaffari M., Gholizadeh A., Rauf S., Shariati F. 2023. Drought‐stress induced changes of fatty acid composition affecting sunflower grain yield and oil quality. Food Science & Nutrition 11 (12): 7718–7731. DOI: 10.1002/fsn3.3690
Godoy F., Olivos-Hernández K., Stange C., Handford M. 2021. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants 10 (2): 186. DOI: 10.3390/plants10020186
Hernández L.F. 1996. Morphogenesis in sunflower (Helianthus annuus L.) as affected by exogenous application of plant growth regulators. Agroscientia 13 (1): 3–11.
Hussain M.A.M.M., Malik M.A., Farooq M., Khan M.B., Akram M., Saleem M.F. 2009. Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. Journal of Agronomy and Crop Science 195 (2): 98–109. DOI: 10.1111/j.1439-037X.2008.00354.x
Jabeen N.U.S.R.A.T., Ahmad R.A.F.I.Q. 2012. Improvement in growth and leaf water relation parameters of sunflower and safflower plants with foliar application of nutrient solutions under salt stress. Pakistan Journal of Botany 44 (4): 1341–1345.
Jajor E., Strażyński P., Mrówczyński M. (red.). 2020. Metodyka integrowanej ochrony słonecznika dla doradców. Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Poznań, 42 ss. ISBN 978-83-64655-61-6.
Jiang Y., Li M., Qian Y., Rong H., Xie T., Wang S., Cao Y. 2025. Analysis of the transcriptome provides insights into the photosynthate of maize response to salt stress by 5-aminolevulinic acid. International Journal of Molecular Sciences 26 (2): 786. DOI: 10.3390/ijms26020786
Jouyban Z. 2012. The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences 2 (1): 7–10.
Kausar A., Zahra N., Zahra H., Hafeez M.B., Zafer S., Shahzadi A., Prasad P.V. 2023. Alleviation of drought stress through foliar application of thiamine in two varieties of pea (Pisum sativum L.). Plant Signaling and Behavior 18 (1): 2186045. DOI: 10.1080/15592324.2023.2186045
Kaya A., Yigit E. 2014. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotoxicology and Environmental Safety 106: 232–238. DOI: 10.1016/j.ecoenv.2014.04.041
Keipp K., Hütsch B.W., Ehlers K., Schubert S. 2020. Drought stress in sunflower causes inhibition of seed filling due to reduced cell‐extension growth. Journal of Agronomy and Crop Science 206 (5): 517–528. DOI: 10.1111/jac.12400
Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., Shahid I.M.A., Babar M.A. 2020. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany 52 (2): 355–363. DOI: 10.30848/PJB2020- 2(24)
Khan M.I.R., Poor P., Janda T. 2022. Salicylic acid: A versatile signaling molecule in plants. Journal of Plant Growth Regulation 41 (5): 1887–1890. DOI: 10.1007/s00344-022-10692-4
Kheybari M., Daneshian J., Rahmani H.A., Seyfzadeh S., Khiavi M. 2013. Response of sunflower head characteristics to PGPR and amino acid application under water stress conditions. International Journal of Agronomy and Plant Production 4 (8): 1760–1765.
Koutroubas S.D., Vassiliou G., Damalas C.A. 2014. Sunflower morphology and yield as affected by foliar applications of plant growth regulators. International Journal of Plant Production 8 (2): 215–229.
Kucharski J., Hlasko A., Wyszkowska J. 2001. Wpływ zanieczyszczenia gleby miedzią na jej właściwości fizykochemiczne i na aktywność enzymów glebowych. Zeszyty Problemowe Postępów Nauk Rolniczych 476: 173–180.
Lalarukh I., Zahra N., Shahzadi A., Hafeez M.B., Shaheen S., Kausar A., Raza A. 2023. Role of aminolevulinic acid in mediating salinity stress tolerance in sunflower (Helianthus annuus L.). Journal of Soil Science and Plant Nutrition 23 (4): 5345–5359. DOI: 10.1007/s42729-023-01406-0
Li A., Xue S., Liu L. 2022. Action of salicylic acid on plant growth. Frontiers in Plant Science 13: 878076. DOI: 10.3389/ fpls.2022.878076
Matysiak K. 2024. Regulatory wzrostu i rozwoju w uprawie słonecznika zwyczajnego (Helianthus annuus L.). [Plant growth regulators application in sunflower (Helianthus annuus L.)]. Progress in Plant Protection 64 (2): 63–69. DOI: 10.14199/ppp- 2024-006
Monzón G.C., Pinedo M., Lamattina L., De La Canal L. 2012. Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regulation 66: 129–136. DOI: 10.1007/s10725-011-9636-4
Mostafa H., Afify M.T. 2022. Influence of water stress on engineering characteristics and oil content of sunflower seeds. Scientific Reports 12: 12418. DOI: 10.1038/s41598-022-16271-7
Mostafa H., El-Ansary M., Awad M., Husein N. 2021. Water stress management for sunflower under heavy soil conditions. Agricultural Engineering International: CIGR Journal 23 (2): 76–84.
Noreen S., Ashraf M., Hussain M., Jamil A. 2009. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany 41 (1): 473–479.
Oguz M.C., Aycan M., Oguz E., Poyraz I., Yildiz M. 2022. Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2 (4): 180–197. DOI: 10.3390/physiologia2040015
Pekcan V., Evci G., Yilmaz M.I., Nalcaiyi A.B., Erdal Ş.Ç., Cicek N., Arslan O., Ekmekci Y., Kaya Y. 2016. Effects of drought stress on sunflower stems and roots. International Journal of Advances in Agricultural & Environmental Engineering 3 (1): 96–103. DOI: 10.15242/IJAAEE.AE0216102
Rhaman M.S., Imran S., Karim M.M., Chakrobortty J., Mahamud M.A., Sarker P., Hasanuzzaman M. 2021. 5-aminolevulinic acid- -mediated plant adaptive responses to abiotic stress. Plant Cell Reports 40 (8): 1451–1469. DOI: 10.1007/s00299-021-02690-9
Rondanini D., Mantese A., Savin R., Hall A.J. 2006. Responses of sunflower yield and grain quality to alternating day/night high temperature regimes during grain filling: effects of timing, duration and intensity of exposure to stress. Field Crops Research 96 (1): 48–62. DOI: 10.1016/j.fcr.2005.05.006
Rouphael Y., Colla G. 2020. Biostimulants in agriculture. Frontiers in Plant Science 11: 40. DOI: 10.3389/fpls.2020.00040
Sala C.A., Bulos M., Altieri E., Ramos M.L. 2012. Sunflower: improving crop productivity and abiotic stress tolerance. s. 1203–1249. W: Improving Crop Resistance to Abiotic Stress (R. Tuteja, N. Tuteja, S.S. Gill, A.F. Tiburcio, red.). Wiley- -Blackwell. VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, 1534 ss. ISBN 978-3-527-63293-0.
Sayed S., Gadallah M. 2002. Effects of shoot and root application of thiamin on salt-stressed sunflower plants. Plant Growth Regulation 36: 71–80. DOI: 10.1023/A:1014784831387
Shah T., Xu J., Zou X., Cheng Y., Nasir M., Zhang X. 2018. Omics approaches for engineering wheat production under abiotic stresses. International Journal of Molecular Sciences 19 (8): 2390. DOI: 10.3390/ijms19082390
Sher A., Nawaz A., Ul-Allah S., Sattar A., Ijaz M., Qayyum A., Manaf A. 2024. Foliar application of 5-aminolevulinic acid improves the salt tolerance in sunflower (Helianthus annuus L.) by enhancing the morphological attributes and antioxidant defense mechanism. Acta Physiologiae Plantarum 46 (3): 24. DOI: 10.1007/s11738-024-03647-7
Siddique M.S., Qadir G., Gill S.M., Sultan T., Ahmed Z.I., Hayat R. 2020. Bio-invigoration of rhizobacteria supplemented with exogenous salicylic acid and glycine betaine enhanced drought tolerance in sunflower. International Journal of Agriculture and Biology 23 (5): 869–881. DOI: 10.17957/IJAB/15.1364
Swain R., Sahoo S., Behera M., Rout G.R. 2023. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Frontiers in Plant Sciences 14: 1104874. DOI: 10.3389/fpls.2023.1104874
Tejada M., Gonzales J.L. 2003. Influence of foliar fertilization with amino acids and humic acids on productivity and quality of Asparagus. Biological Agriculture and Horticulture 21 (3): 277–291. DOI: 10.1080/01448765.2003.9755270
van der Merwe R., Labuschagne M.T., Herselman L., Hugo A. 2015. Effect of heat stress on seed yield components and oil composition in high-and mid-oleic sunflower hybrids. South African Journal of Plant and Soil 32 (3): 121–128. DOI: 10.1080/02571862.2015.1018354
Wasternack C., Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111 (6): 1021–1058. DOI: 10.1093/aob/mct067
Xiu-Zhen H.A.O., Dong-Mei Z.H.O.U., Dan-Dan L.I. 2012. Growth, cadmium and zinc accumulation of ornamental sunflower (Helianthus annuus L.) in contaminated soil with different amendments. Pedosphere 22 (5): 631–639. DOI: 10.1016/S1002- 0160(12)60048-4
Yeremenko O., Kalytka V. 2017. Productivity of sunflower hybrids (Helianthus annuus L.) under the effect of AKM plant growth regulator in the conditions low moisture of southern Steppe of Ukraine. Agricultural Science and Practice 4 (1): 11–19. DOI: 10.9790/2380-0909015964
Zandalinas S.I., Sengupta S., Fritschi F.B., Azad R.K., Nechushtai R., Mittler R. 2021. The impact of multifactorial stress combination on plant growth and survival. New Phytology 230 (3): 1034–1048. DOI: 10.1111/nph.17232
Zhang Z., Yuan L., Dang J., Zhang Y., Wen Y., Du Y., Hu X. 2024. 5-aminolevulinic acid improves cold resistance through regulation of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. Horticulture Research 11 (3): uhae026. DOI: 10.1093/hr/uhae026 |
Progress in Plant Protection (2025) : 0-0 |
First published on-line: 2025-08-14 09:55:02 |
http://dx.doi.org/10.14199/ppp-2025-014 |
Full text (.PDF) BibTeX Mendeley Back to list |