Progress in Plant Protection

Znaczenie biostymulatorów w adaptacji słonecznika (Helianthus annuus L.) do warunków stresowych
Importance of biostimulants in sunflower (Helianthus annuus L.) adaptation to stress

Kinga Matysiak, e-mail: k.matysiak@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Jakub Zubek, e-mail: jakub.zubek@bdi.agro.pl

BDI-Agro , Koronowska 16, 86-022 Kotomierz, Polska

Monika Michel, e-mail: m.michel@iorpib.poznan.pl

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Terenowa Stacja Doświadczalna w Toruniu, Pigwowa 16, 87-100 Toruń, Polska
Streszczenie

Słonecznik zwyczajny (Helianthus annuus L.) jest uprawiany w zróżnicowanych warunkach klimatycznych i charakteryzuje się wrażliwo­ścią na czynniki stresu abiotycznego, w tym głównie suszę, zasolenie, wysokie lub niskie temperatury oraz zanieczyszczenie metalami ciężkimi. Czynniki te, występujące zwłaszcza w krytycznych fazach rozwoju – kwitnienia i nalewania niełupek – prowadzą do zaburzeń fizjologicznych i metabolicznych, skutkując obniżeniem plonowania oraz jakości oleju. W ostatnich latach obserwuje się rosnące za­interesowanie wykorzystaniem egzogennie stosowanych biostymulatorów jako narzędzi wspomagających odporność słonecznika na niekorzystne warunki środowiskowe. Celem pracy był przegląd dostępnej literatury dotyczącej wpływu biostymulatorów na fizjologięi efektywność plonowania słonecznika w warunkach stresu abiotycznego. Uwzględniono działanie takich substancji, jak kwas salicylowy, kwas askorbinowy, jasmoniany, aminokwasy, tiamina, glicynobetaina oraz preparaty wieloskładnikowe. Analizowane związki wykazują zdolność do aktywacji mechanizmów obronnych, poprawy gospodarki wodnej, stabilizacji strukturalnej komórek oraz regulacji szlaków hormonalnych i enzymatycznych. Ich zastosowanie skutkuje zwiększoną tolerancją roślin na stres, poprawą parametrów morfologicz­nych i jakościowych oraz korzystnym wpływem na skład chemiczny nasion. Mimo rosnącej liczby badań, nadal brakuje jednoznacznych danych dotyczących optymalnych dawek, terminów aplikacji i mechanizmów molekularnych działania biostymulatorów. Dalsze badania, uwzględniające interakcje genotyp–środowisko–technologia, są niezbędne do pełnego wykorzystania potencjału biostymulacji w zrów­noważonej uprawie słonecznika w warunkach zmian klimatycznych.

 

Common sunflower (Helianthus annuus L.), as a key oilseed crop cultivated across diverse climatic zones, is exposed to a wide range of abiotic stresses, including drought, salinity, extreme temperatures, and heavy metal contamination. These stressors, particularly when occurring during critical developmental stages – such as flowering and seed filling – lead to physiological and metabolic disturbances, ultimately resulting in yield reduction and diminished oil quality. In recent years, there has been growing interest in the use of exoge­nously applied biostimulants as a strategy to enhance sunflower resilience under adverse environmental conditions. The objective of this study was to review the available literature on the effects of biostimulants on physiology and yield performance of sunflower under abiotic stress. The review focused on substances such as salicylic acid, ascorbic acid, jasmonates, amino acids, thiamine, glycine betaine, and multi-component formulations. These compounds have been shown to activate plant defense mechanisms, improve water balance, stabilize cellular structures, and regulate hormonal and enzymatic pathways. Their application enhances stress tolerance, improves mor­phological and quality traits, and positively influences seed chemical composition. Despite the increasing volume of research, there re­mains a lack of conclusive data regarding optimal dosages, application timing, and molecular mechanisms of biostimulant action. Further studies accounting for genotype–environment–technology interactions are essential for the full exploitation of biostimulant potential in the sustainable cultivation of sunflower under changing climate conditions.

Słowa kluczowe
stres abiotyczny; susza; zasolenie; temperatura; zmiany klimatu; abiotic stress; drought; salinity; temperature; climate change
Referencje

Abdallah M.M.S., Bakry B.A., El-Bassiouny H.M.S., El-Monem A.A.A. 2020. Growth, yield and biochemical impact of anti-transpirants on sunflower plant grown under water deficit. Pakistan Journal of Biological Sciences 23 (4): 454–466. DOI: 10.3923/pjbs.2020.454.466

 

Ahmed F., Baloch D.M., Sadiq S.A., Ahmed S.S., Hanan A., Taran S.A., Ahmed N., Hassan M.J. 2014. Plant growth regulators in­duced drought tolerance in sunflower (Helianthus annuus L.) hybrids. The Journal of Animal & Plant Sciences 24 (3): 886–890.

 

Andrade A., Castillo P., Vigliocco A., Alemano A., Abdala G. 2011. Sunflower responses to drought stress during early develop­ment. W: Sunflowers: Cultivation, Nutrition, and Biodiesel Uses (V.C. Hughes, red.). Science Publishers. ISBN 978-1-61761- 309-8.

 

Andrianasolo F.N., Debaeke P., Champolivier L., Maza E., Maury P. 2016. Analysis and modelling of the factors controlling seed oil content in sunflower: a review. OCL – Oilseeds and fats Crops and Lipids 23 (2): D206. DOI: 10.1051/ocl/2016004

 

Beltrano J., Caldiz D.O., Barreyro R., Vallduvi G.S., Bezus R. 1994. Effects of foliar applied gibberellic acid and benzylad­enine upon yield components in sunflower (Helianthus annuus L.). Plant Growth Regulation 15: 101–106. DOI: 10.1007/ BF00024097

 

Bertolino L.T., Caine R.S., Gray J.E. 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science 10: 225. DOI: 10.3389/fpls.2019.00225

 

Bourioug M., Ezzaza K., Bouabid R., Alaoui-Mhamdi M., Bungau S., Bourgeade P., Alaoui-Sossé L., Alaoui-Sossé B., Aleya L. 2020. Influence of hydro- and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research 27 (12): 13215–13226. DOI: 10.1007/s11356-020-07893-3

 

Brown P., Saa S. 2015. Biostimulants in agriculture. Frontiers in Plant Science 6: 671. DOI: 10.3389/fpls.2015.00671

 

Caine R.S., Harrison E.L., Sloan J., Flis P.M., Fischer S., Khan M.S., Nguyen P.T., Nguyen L.T., Gray J.E., Croft H. 2023. The influences of stomatal size and density on rice abiotic stress resilience. New Phytologist 237 (6): 2180–2195. DOI: 10.1111/ nph.18704

 

Calvo P., Nelson L., Kloepper J.W. 2014. Agricultural uses of plant biostimulants. Plant and Soil 383 (1): 3–41. DOI: 10.1007/ s11104-014-2131-8

 

Cojocaru F., Joiţa-Păcureanu M., Negoiță M., Mihai L., Popescu G., Ciornei L., Ion V., Anton G.F., Rîşnoveanu L., Oprea D., Bran A., Sava E. 2023. The impact of climatic conditions on oil content and quality in sunflower. Romanian Agricultural Re­search 40 (40): 1–9. DOI: 10.59665/rar4024

 

Corbineau F., Rudnicki R.M., Come D. 1988. The effects of methyl jasmonate on sunflower (Helianthus annuus L.) seed germina­tion and seedling development. Plant Growth Regulation 7: 157–169. DOI: 10.1007/BF00028238

 

Damalas C.A., Koutroubas S.D. 2022. Exogenous application of salicylic acid for regulation of sunflower growth under abiotic stress: a systematic review. Biologia 77 (7): 1685−1697. DOI: 10.1007/s11756-022-01020-y

 

Di Caterina R., Giuliani M.M., Rotunno T., De Caro A., Flagella Z. 2007. Influence of salt stress on seed yield and oil quality of two sunflower hybrids. Annals of Applied Biology 151 (2): 145−154. DOI: 10.1111/j.1744-7348.2007.00165.x

 

Domaratskiy Y. 2021. Leaf area formation and photosynthetic activity of sunflower plants depending on fertilizers and growth regulators. Journal of Ecological Engineering 22 (6): 99–105. DOI: 10.12911/22998993/137361

 

Earley A.M., Nolting K.M., Burke J.M. 2023. Leaf traits predict performance under varying levels of drought stress in cultivated sunflower (Helianthus annuus L.). bioRxiv The preprint server for biology. DOI: 10.1101/2023.03.06.531401

 

Earley A.M., Temme A.A., Cotter C.R., Burke J.M. 2022. Genomic regions associate with major axes of variation driven by gas exchange and leaf construction traits in cultivated sunflower (Helianthus annuus L.). The Plant Journal 111 (5): 1425–1438. DOI: 10.1111/tpj.15900

 

El-Ramady H., Prokisch J., Mansour H., Bayoumi Y.A., Shalaby T.A., Veres S., Brevik E.C. 2024. Review of crop response to soil salinity stress: Possible approaches from leaching to nano-management. Soil Systems 8 (1): 11. DOI: 10.3390/soilsys­tems8010011

 

El-Tayeb M.A., El-Enany A.E., Ahmed N.L. 2006. Salicylic acid-induced adaptive response to copper stress in sunflower (Helian­thus annuus L.). Plant Growth Regulation 50 (2): 191–199. DOI: 10.1007/s10725-006-9118-2

 

Ernst D., Kovar M., Černý I. 2016. Effect of two different plant growth regulators on production traits of sunflower. Journal of Central European Agriculture 17 (4): 998–1012. DOI: 10.5513/JCEA01/17.4.1804

 

Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., Ihsan M.Z., Alharby H., Wu C., Wang D., Huang J. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8: 1147. DOI: 10.3389/fpls.2017.01147

 

FAOStat 2023. https://www.fao.org/faostat/en/#data/QCL [dostęp: 10.04.2025].

 

Ghaffari M., Gholizadeh A., Rauf S., Shariati F. 2023. Drought‐stress induced changes of fatty acid composition affecting sun­flower grain yield and oil quality. Food Science & Nutrition 11 (12): 7718–7731. DOI: 10.1002/fsn3.3690

 

Godoy F., Olivos-Hernández K., Stange C., Handford M. 2021. Abiotic stress in crop species: improving tolerance by applying plant metabolites. Plants 10 (2): 186. DOI: 10.3390/plants10020186

 

Hernández L.F. 1996. Morphogenesis in sunflower (Helianthus annuus L.) as affected by exogenous application of plant growth regulators. Agroscientia 13 (1): 3–11.

 

Hussain M.A.M.M., Malik M.A., Farooq M., Khan M.B., Akram M., Saleem M.F. 2009. Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. Journal of Agronomy and Crop Science 195 (2): 98–109. DOI: 10.1111/j.1439-037X.2008.00354.x

 

Jabeen N.U.S.R.A.T., Ahmad R.A.F.I.Q. 2012. Improvement in growth and leaf water relation parameters of sunflower and safflower plants with foliar application of nutrient solutions under salt stress. Pakistan Journal of Botany 44 (4): 1341–1345.

 

Jajor E., Strażyński P., Mrówczyński M. (red.). 2020. Metodyka integrowanej ochrony słonecznika dla doradców. Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Poznań, 42 ss. ISBN 978-83-64655-61-6.

 

Jiang Y., Li M., Qian Y., Rong H., Xie T., Wang S., Cao Y. 2025. Analysis of the transcriptome provides insights into the photosyn­thate of maize response to salt stress by 5-aminolevulinic acid. International Journal of Molecular Sciences 26 (2): 786. DOI: 10.3390/ijms26020786

 

Jouyban Z. 2012. The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences 2 (1): 7–10.

 

Kausar A., Zahra N., Zahra H., Hafeez M.B., Zafer S., Shahzadi A., Prasad P.V. 2023. Alleviation of drought stress through fo­liar application of thiamine in two varieties of pea (Pisum sativum L.). Plant Signaling and Behavior 18 (1): 2186045. DOI: 10.1080/15592324.2023.2186045

 

Kaya A., Yigit E. 2014. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotoxicology and Environmental Safety 106: 232–238. DOI: 10.1016/j.ecoenv.2014.04.041

 

Keipp K., Hütsch B.W., Ehlers K., Schubert S. 2020. Drought stress in sunflower causes inhibition of seed filling due to reduced cell‐extension growth. Journal of Agronomy and Crop Science 206 (5): 517–528. DOI: 10.1111/jac.12400

 

Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., Shahid I.M.A., Babar M.A. 2020. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany 52 (2): 355–363. DOI: 10.30848/PJB2020- 2(24)

 

Khan M.I.R., Poor P., Janda T. 2022. Salicylic acid: A versatile signaling molecule in plants. Journal of Plant Growth Regulation 41 (5): 1887–1890. DOI: 10.1007/s00344-022-10692-4

 

Kheybari M., Daneshian J., Rahmani H.A., Seyfzadeh S., Khiavi M. 2013. Response of sunflower head characteristics to PGPR and amino acid application under water stress conditions. International Journal of Agronomy and Plant Production 4 (8): 1760–1765.

 

Koutroubas S.D., Vassiliou G., Damalas C.A. 2014. Sunflower morphology and yield as affected by foliar applications of plant growth regulators. International Journal of Plant Production 8 (2): 215–229.

 

Kucharski J., Hlasko A., Wyszkowska J. 2001. Wpływ zanieczyszczenia gleby miedzią na jej właściwości fizykochemiczne i na aktywność enzymów glebowych. Zeszyty Problemowe Postępów Nauk Rolniczych 476: 173–180.

 

Lalarukh I., Zahra N., Shahzadi A., Hafeez M.B., Shaheen S., Kausar A., Raza A. 2023. Role of aminolevulinic acid in mediating salinity stress tolerance in sunflower (Helianthus annuus L.). Journal of Soil Science and Plant Nutrition 23 (4): 5345–5359. DOI: 10.1007/s42729-023-01406-0

 

Li A., Xue S., Liu L. 2022. Action of salicylic acid on plant growth. Frontiers in Plant Science 13: 878076. DOI: 10.3389/ fpls.2022.878076

 

Matysiak K. 2024. Regulatory wzrostu i rozwoju w uprawie słonecznika zwyczajnego (Helianthus annuus L.). [Plant growth regulators application in sunflower (Helianthus annuus L.)]. Progress in Plant Protection 64 (2): 63–69. DOI: 10.14199/ppp- 2024-006

 

Monzón G.C., Pinedo M., Lamattina L., De La Canal L. 2012. Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regulation 66: 129–136. DOI: 10.1007/s10725-011-9636-4

 

Mostafa H., Afify M.T. 2022. Influence of water stress on engineering characteristics and oil content of sunflower seeds. Scientific Reports 12: 12418. DOI: 10.1038/s41598-022-16271-7

 

Mostafa H., El-Ansary M., Awad M., Husein N. 2021. Water stress management for sunflower under heavy soil conditions. Agri­cultural Engineering International: CIGR Journal 23 (2): 76–84.

 

Noreen S., Ashraf M., Hussain M., Jamil A. 2009. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany 41 (1): 473–479.

 

Oguz M.C., Aycan M., Oguz E., Poyraz I., Yildiz M. 2022. Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2 (4): 180–197. DOI: 10.3390/physiologia2040015

 

Pekcan V., Evci G., Yilmaz M.I., Nalcaiyi A.B., Erdal Ş.Ç., Cicek N., Arslan O., Ekmekci Y., Kaya Y. 2016. Effects of drought stress on sunflower stems and roots. International Journal of Advances in Agricultural & Environmental Engineering 3 (1): 96–103. DOI: 10.15242/IJAAEE.AE0216102

 

Rhaman M.S., Imran S., Karim M.M., Chakrobortty J., Mahamud M.A., Sarker P., Hasanuzzaman M. 2021. 5-aminolevulinic acid- -mediated plant adaptive responses to abiotic stress. Plant Cell Reports 40 (8): 1451–1469. DOI: 10.1007/s00299-021-02690-9

 

Rondanini D., Mantese A., Savin R., Hall A.J. 2006. Responses of sunflower yield and grain quality to alternating day/night high temperature regimes during grain filling: effects of timing, duration and intensity of exposure to stress. Field Crops Research 96 (1): 48–62. DOI: 10.1016/j.fcr.2005.05.006

 

Rouphael Y., Colla G. 2020. Biostimulants in agriculture. Frontiers in Plant Science 11: 40. DOI: 10.3389/fpls.2020.00040

 

Sala C.A., Bulos M., Altieri E., Ramos M.L. 2012. Sunflower: improving crop productivity and abiotic stress tolerance. s. 1203–1249. W: Improving Crop Resistance to Abiotic Stress (R. Tuteja, N. Tuteja, S.S. Gill, A.F. Tiburcio, red.). Wiley- -Blackwell. VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, 1534 ss. ISBN 978-3-527-63293-0.

 

Sayed S., Gadallah M. 2002. Effects of shoot and root application of thiamin on salt-stressed sunflower plants. Plant Growth Regu­lation 36: 71–80. DOI: 10.1023/A:1014784831387

 

Shah T., Xu J., Zou X., Cheng Y., Nasir M., Zhang X. 2018. Omics approaches for engineering wheat production under abiotic stresses. International Journal of Molecular Sciences 19 (8): 2390. DOI: 10.3390/ijms19082390

 

Sher A., Nawaz A., Ul-Allah S., Sattar A., Ijaz M., Qayyum A., Manaf A. 2024. Foliar application of 5-aminolevulinic acid im­proves the salt tolerance in sunflower (Helianthus annuus L.) by enhancing the morphological attributes and antioxidant de­fense mechanism. Acta Physiologiae Plantarum 46 (3): 24. DOI: 10.1007/s11738-024-03647-7

 

Siddique M.S., Qadir G., Gill S.M., Sultan T., Ahmed Z.I., Hayat R. 2020. Bio-invigoration of rhizobacteria supplemented with exogenous salicylic acid and glycine betaine enhanced drought tolerance in sunflower. International Journal of Agriculture and Biology 23 (5): 869–881. DOI: 10.17957/IJAB/15.1364

 

Swain R., Sahoo S., Behera M., Rout G.R. 2023. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Frontiers in Plant Sciences 14: 1104874. DOI: 10.3389/fpls.2023.1104874

 

Tejada M., Gonzales J.L. 2003. Influence of foliar fertilization with amino acids and humic acids on productivity and quality of Asparagus. Biological Agriculture and Horticulture 21 (3): 277–291. DOI: 10.1080/01448765.2003.9755270

 

van der Merwe R., Labuschagne M.T., Herselman L., Hugo A. 2015. Effect of heat stress on seed yield components and oil composition in high-and mid-oleic sunflower hybrids. South African Journal of Plant and Soil 32 (3): 121–128. DOI: 10.1080/02571862.2015.1018354

 

Wasternack C., Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111 (6): 1021–1058. DOI: 10.1093/aob/mct067

 

Xiu-Zhen H.A.O., Dong-Mei Z.H.O.U., Dan-Dan L.I. 2012. Growth, cadmium and zinc accumulation of ornamental sunflower (Helianthus annuus L.) in contaminated soil with different amendments. Pedosphere 22 (5): 631–639. DOI: 10.1016/S1002- 0160(12)60048-4

 

Yeremenko O., Kalytka V. 2017. Productivity of sunflower hybrids (Helianthus annuus L.) under the effect of AKM plant growth regulator in the conditions low moisture of southern Steppe of Ukraine. Agricultural Science and Practice 4 (1): 11–19. DOI: 10.9790/2380-0909015964

 

Zandalinas S.I., Sengupta S., Fritschi F.B., Azad R.K., Nechushtai R., Mittler R. 2021. The impact of multifactorial stress combina­tion on plant growth and survival. New Phytology 230 (3): 1034–1048. DOI: 10.1111/nph.17232

 

Zhang Z., Yuan L., Dang J., Zhang Y., Wen Y., Du Y., Hu X. 2024. 5-aminolevulinic acid improves cold resistance through regula­tion of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. Horticulture Research 11 (3): uhae026. DOI: 10.1093/hr/uhae026

Progress in Plant Protection (2025) : 0-0
Data pierwszej publikacji on-line: 2025-08-14 09:55:02
http://dx.doi.org/10.14199/ppp-2025-014
Pełny tekst (.PDF) BibTeX Mendeley Powrót do listy