Progress in Plant Protection

Effect of thermal conditions on the incubation period of wheat leaf rust
Wpływ warunków termicznych na okres inkubacji rdzy brunatnej pszenicy

Andrzej Wójtowicz, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Marek Wójtowicz, e-mail:

Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Oddział w Poznaniu, Strzeszyńska 36, 60-479 Poznań, Polska

Maria Pasternak, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznan, Polska

Katarzyna Pieczul, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Ilona Świerczyńska, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

Katarzyna Sadowska, e-mail:

Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Władysława Węgorka 20, 60-318 Poznań, Polska

The aim of the study was to mathematically compile the effect of temperature on the length of the wheat brown rust incubation period. Experiments aimed at achieving this goal were carried out in quazi-natural conditions in the years 2013–2015. The experiments consisted in carrying out wheat inoculation with Puccinia recondita f. sp. tritici spores and determining the date of occurrence of the first brown rust disease symptoms. The obtained results were used to develop the model determining the length of the incubation period based on average daily air temperatures.


Celem pracy było matematyczne opracowanie wpływu temperatury na długość okresu inkubacji rdzy brunatnej pszenicy. Doświadczenia ukierunkowane na osiągnięcie założonego celu przeprowadzono w warunkach quazi-naturalnych w latach 2013–2015. Eksperymenty polegały na przeprowadzeniu inokulacji pszenicy zarodnikami Puccinia recondita f. sp. tritici i określeniu terminu wystąpienia pierwszych objawów chorobowych rdzy brunatnej. Uzyskane wyniki wykorzystano do opracowania modelu wyznaczającego długość okresu inkubacji na podstawie średnich dobowych temperatur powietrza.

Key words

Puccinia recondita; wheat; incubation period; model; pszenica; okres inkubacji


Alfonsi W.M.V., Coltri P.P., Zullo Júnior J., Patrício F.R.A., Gonçalves R.R., Shinji K., Alfonsi E.L., Koga-Vicente A. 2019. Geographical distribution of the incubation period of coffee leaf rust in climate change scenarios. Pesquisa Agropecuária Brasileira 54: e00273. DOI: 10.1590/S1678-3921.pab2019.v54.00273


Aoun M., Breiland M., Turner K., Loladze A., Chao S., Xu S., Ammar K., Anderson J.A., Kolmer J., Acevedo M. 2016. Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection. The Plant Genome 9 (3): 1–24. DOI: 10.3835/plantgenome2016.01.0008


Behlau F., Scandelai L.H.M., da Silva Junior G.J., Lanza F.E. 2017. Soluble and insoluble copper formulations and metallic copper rate for control of citrus canker on sweet orange trees. Crop Protection 94: 185–191. DOI: 10.1016/j.cropro.2017.01.003


Broers L.H.M., Wallenburg S.C. 1989. Influence of post-infection temperature on three components of partial resistance in wheat to wheat leaf rust. Euphytica 44: 215–224. DOI: 10.1007/BF00037528


Copes W.E., Thomson J.L. 2008. Survival analysis to determine the length of the incubation period of Camellia twig blight caused by Colletotrichum gloeosporioides. Plant Disease 92 (8): 1177–1182. DOI: 10.1094/PDIS-92-8-1177


Drijepondt S.C., Pretorius Z.A. 1989. Greenhouse evaluation of adult-plant resistance conferred by the gene Lr34 to leaf rust of wheat. Plant Disease 73 (8): 669–671. DOI: 10.1094/pd-73-0669


Eversmeyer M., Kramer C., Browder L. 1980. Effect of temperature and host: parasite combination on the latent period of Puccinia recondita in seedling wheat plants. Phytopathology 70 (10): 938–941. DOI: 10.1094/Phyto-70-938


Eyal Z., Peterson J. 1967. Uredospore production of five races of Puccinia recondita Rob. ex Resm. as affected by light and temperature. Canadian Journal of Botany 45 (4): 537–540. DOI: 10.1139/b67-058


Fisher A.J., Woods A.J., Smith D.M., Bruckart W.L. 2008. Latent period and viability of Puccinia jaceae var. solstitialis urediniospores: Implications for biological control of yellow starthistle. Biological Control 45 (1): 146–153. DOI: 10.1016/j.biocontrol.2007.10.008


Gacek E. 2013. Lista Opisowa Odmian. COBORU, Słupia Wielka, 1174 ss.


Ghini R., Hamada E., Pedro Júnior M.J., Gonçalves R.R.V. 2011. Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathologica 37 (2): 85–93. DOI: 10.1590/S0100-54052011000200001


Huang Y.J., Liu Z., West J.S., Todd A.D., Hall A.M., Fitt B.D.L. 2007. Effects of temperature and rainfall on date of release of ascospores of Leptosphaeria maculans (phoma stem canker) from winter oilseed rape (Brassica napus) debris in the UK. Annals of Applied Biology 151 (1): 99–111. DOI: 10.1111/j.1744-7348.2007.0015.x


Jeger M.J. 2004. Analysis of disease progress as a basis for evaluating disease management practices. Annual Review of Phytopathology 42: 61–82. DOI: 10.1146/annurev.phyto.42.040803.140427


Johnson D.A. 1980. Effect of low temperature on the latent period of slow and fast rusting winter wheat genotypes. Plant Disease 64: 1006–1008. DOI: 10.1094/PD-64-1006


Karolewski Z., Evans N., Fitt B.D.L., Todd A.D., Baierl A. 2002. Sporulation of Pyrenopeziza brassicae (light leaf spot) on oilseed rape (Brassica napus) leaves inoculated with ascospores or conidia at different temperatures and wetness durations. Plant Pathology 51 (5): 654–665. DOI: 10.1046/j.1365-3059.2002.00746.x


Kleinhenz B., Falke K., Kakau J., Rossberg D. 2007. SIMBLIGHT1 – a new model to predict first occurrence of potato late blight. Bulletin OEPP/EPPO Bulletin 37 (2): 339–343. DOI: 10.1111/j.1365-2338.2007.01135.x


Kluge E., Jörg E., Rossberg D. 2006. SIMSEPT: Eine Entscheidungshilfe zur Bekämpfung von Septoria tritici und Septoria nodorum. [SIMSEPT: A computer aided decision support system for the control of Septoria tritici and Septoria nodorum]. Archives of Phytopathology and Plant Protection 39 (2): 79–92. DOI: 10.1080/03235400500289577


Kolmer J. 2009. Wheat leaf rust. [dostęp: 12.03.2020].


Kolnaar W. 2006. Influence of rust epidemics on interspecific plant competition. [dostęp: 12.03.2020].


Leclerc M., Doré T., Gilligan C.A., Lucas P., Filipe J.A. 2014. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases. PLoS One 9 (1): e86568. DOI: 10.1371/journal.pone.0086568


Lovell D.J., Hunter T., Powers S.J., Parker S.R., Van den Bosch F. 2004. Effect of temperature on latent period of septoria leaf blotch on winter wheat under outdoor conditions. Plant Pathology 53 (2): 170–181. DOI: 10.1111/j.0032-0862.2004.00983.x


Madden L.V., Hughes G., van den Bosch F. 2007. The Study of Plant Disease Epidemics. The APS, St. Paul, MN, USA. ISBN 978-0-89054-354-2.


Nopsa H.J.F., Pfender W.F. 2014. A latent period duration model for wheat stem rust. Plant Disease 98 (10): 1358–1363. DOI: 10.1094/PDIS-11-13-1128-RE


Nutter F.F. 2007. The role of plant disease epidemiology in developing successful integrated disease management programs. s. 45–79. W: General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases, Vol. 1 (A. Ciancio, K.G. Mukerji, red.). Springer, Dordrecht. ISBN 978-1-4020-6060-1. DOI: 10.1007/978-1-4020-6061-8_3


Pariaud B., Berg F., Bosch F., Powers S.J., Kaltz O., Lannou C. 2013. Shared influence of pathogen and host genetics on a trade-off between latent period and spore production capacity in the wheat pathogen, Puccinia triticina. Evolutionary Applications 6 (2): 303–312. DOI: 10.1111/eva.12000


Pfender W.F. 2001. A temperature-based model for latentperiod duration in stem rust of perennial ryegrass and tall fescue. Phytopathology 91 (1): 111–116. DOI: 10.1094/PHYTO.2001.91.1.111


Pretorius Z.A., Kloppers F.J., Drijepondt S.C. 1994. Effects of inoculum density and temperature on three components of leaf rust resistance controlled by Lr34 in wheat. Euphytica 74: 91–96. DOI: 10.1007/BF00033772


Racca P., Kleinhenz B., Jörg E. 2007. SIMPEROTA 1/3 – a decision support system for blue mould disease of tobacco. Bulletin OEPP/EPPO Bulletin 37 (2): 368–373. DOI: 10.1111/j.1365-2338.2007.01139.x


Räder T., Racca P., Jörg E., Hau B. 2007. PUCREC/PUCTRI – a decision support system for the control of leaf rust of winter wheat and winter rye. Bulletin OEPP/EPPO Bulletin 37 (2): 378–382. DOI: 10.1111/j.1365-2338.2007.01140.x


Riaz A., Periyannan S., Aitken E., Hickey L. 2016. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12: 17. DOI: 10.1186/s13007-016-0117-7


Savary S., Teng P.S., Willocquet L., Nutter F.W. 2006. Quantification and modeling of crop losses: a review of purposes. Annual Review of Phytopathology 44: 89–112. DOI: 10.1146/annurev.phyto.44.070505.143342


Shakya S.K., Goss E.M., Dufault N.S., van Bruggen A.H.C. 2015. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change. Phytopathology 105 (2): 230–238. DOI: 10.1094/PHYTO-05-14-0132-R


Shaner G., Finney R.E. 1980. New sources of slow leaf rusting resistance in wheat. Phytopathology 70: 1183–1186.


Suffert F., Thompson R. 2018. Some reasons why the latent period should not always be considered constant over the course of a plant disease epidemic. Plant Pathology 67 (9): 1831–1840. DOI: 10.1111/ppa.12894


Tomerlin J., Eversmeyer M., Kramer C., Browder L. 1983. Temperature and host effects on latent and infectious periods and on urediniospores of Puccinia recondita f. sp. tritici. Phytopathology 73 (3): 414–419.


van der Gaag D., Jacobs T. 1997. Inheritance of host plant effect on latent period of wheat leaf rust in single-seed descent F8 lines. Euphytica 97: 67–72. DOI: 10.1023/A:1003036905248


van Maanen A., Xu X.-M. 2003. Modelling plant disease epidemics. European Journal of Plant Pathology 109: 669–682. DOI: 10.1023/A:1026018005613


Webb C.R., Gilligan C.A., Asher M.J.C. 2000. Modelling the effect of temperature on the development of Polymyxa betae. Plant Pathology 49 (5): 600–607. DOI: 10.1046/j.1365-3059.2000.00483.x


Webb D.H., Nutter F.W. Jr. 1997. Effects of leaf wetness duration and temperature on infection efficiency, latent period, and rate of pustule appearance of rust in alfalfa. Phytopathology 87 (9): 946–950. DOI: 10.1094/PHYTO.1997.87.9.946


Willocquet L., Aubertot J.N., Lebard S., Robert C., Lannou C., Savary S. 2008. Simulating multiple pest damage in varying winter wheat production situations. Field Crops Research 107 (11): 12–28. DOI: 10.1016/j.fcr.2007.12.013


Windes J.M. 2008. Heating up Idaho agriculture: global warming and its impact on Idaho agriculture. [dostęp: 12.03.2020].


Wójtowicz A. 2012. Opracowanie i walidacja modelu szacującego pojawienie się objawów chorobowych powodowanych przez Puccinia recondita f. sp. tritici. [Validation of a model for estimation appearance of symptoms caused by Puccinia recondita f. sp. tritici]. Progress in Plant Protection 52 (3): 680–683. DOI: 10.14199/ppp-2012-119


Wójtowicz A., Wójtowicz M., Sigvald R., Czernecki B., Ratajkiewicz H., Łacka A., Zacharczuk M., Pasternak M. 2019. Assessment of the impact of climate change on the latency period of leaf rust on triticale in Poland. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 70 (3): 195–207. DOI: 10.1080/09064710.2019.1696394


Wójtowicz A., Wójtowicz M., Sigvald R., Pasternak M. 2017. Predicting the effects of climate change on latency period of wheat leaf rust in western Poland. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 67 (3): 223–234. DOI: 10.1080/09064710.2016.1248481


Xu X. 2006. Modelling and interpreting disease progress in time. W: The Epidemiology of Plant Diseases (B. Cooke, D. Jones, B. Kaye, red.). Springer, Dordrecht. ISBN 978-1-4020-4579-0. DOI: 10.1007/1-4020-4581-6_8


Xu X., Robinson J. 2000. Effects of temperature on the incubation and latent periods of hawthorn powdery mildew (Podosphaera clandestina). Plant Pathology 49 (6): 791–797. DOI: 10.1046/j.1365-3059.2000.00520.x


Xu X.Y., Guihua B., Carver B., Shaner G., Hunger R. 2005. Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theoretical and Applied Genetics 110: 244–251. DOI: 10.1007/s00122-004-1819-1

Progress in Plant Protection (2020) 60: 57-64
First published on-line: 2020-03-25 13:53:40
Full text (.PDF) BibTeX Mendeley Back to list