Progress in Plant Protection

Selenium in plants and its effect on feeding and development of phytophages
Selen w roślinach i jego wpływ na żerowanie i rozwój fitofagów

Sabina Łukaszewicz, e-mail:

Uniwersytet Przyrodniczy w Poznaniu, Wydział Ogrodnictwa i Architektury Krajobrazu, Katedra Fizjologii Roślin, Wołyńska 35, 60-637 Poznań, Polska

Barbara Politycka, e-mail:

Uniwersytet Przyrodniczy w Poznaniu, Wydział Ogrodnictwa i Architektury Krajobrazu, Katedra Fizjologii Roślin, Wołyńska 35, 60-637 Poznań, Polska

Plant organisms are exposed to various biotic and abiotic stress factors, which cause oxidative stress consisting in the imbalance between the formation and removal of reactive oxygen species, causing damage to cell components. It has been observed that the accumulation of trace elements such as arsenic, cadmium, nickel, zinc and selenium is one of the plants defence strategies against phytophages and it is termed as Elemental Defence Hypothesis. Included in the trace elements, selenium is taken up from the soil by plants and included in their metabolism along sulphur transport and transformation pathways. This element in low concentration supports the resistance of plants to various stress factors by affecting the elements of the antioxidant system. Selenium contained in plants can also act on as a deterrent to phytophages or feeding them toxins and disrupting their development cycle.


Organizmy roślinne narażone są na działanie różnych biotycznych i abiotycznych czynników stresowych, które powodują stres oksydacyjny polegający na zachwianiu równowagi pomiędzy tworzeniem a usuwaniem reaktywnych form tlenu, powodujących uszkodzenia składników komórki. Zaobserwowano, że akumulacja pierwiastków śladowych, takich jak arsen, kadm, nikiel, cynk oraz selen, stanowi jedną ze strategii obronnych roślin przed fitofagami i jest określana terminem Elemental Defense Hypothesis. Zaliczany do pierwiastków śladowych selen jest pobierany z gleby przez rośliny oraz włączany w ich metabolizm na szlakach transportu i przemian siarki. Pierwiastek ten w niskiej koncentracji wspomaga odporność roślin na działanie różnych czynników stresowych, poprzez wpływ na elementy systemu antyoksydacyjnego. Selen zawarty w roślinach może też działać na żerujące fitofagi deterentnie lub toksycznie oraz zaburzać ich cykl rozwojowy.

Key words

phytophages; trace elements; selenium; plant; toxicity; fitofagi; pierwiastki śladowe; selen; roślina; toksyczność


Abbas S.M. 2012. Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. Journal of Stress Physiology and Biochemistry 8 (1): 268–286.


Akladious S.A. 2012. Influence of different soaking times with selenium on growth, metabolic activities of wheat seedlings under low temperature stress. African Journal of Biotechnology 11 (82): 14792–14804. DOI: 10.5897/AJB12.2140


Bañuelos G.S., Arroyoa I., Pickering I.J., Yang S.I., Freeman J.L. 2015. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chemistry 166: 603–608. DOI: 10.1016/j.foodchem.2014.06.071


Bañuelos G.S., Vickerman D.B., Trumble J.T., Shannon M.C., Davis C.D., Finley J.W., Mayland H.F. 2002. Biotransfer possibilities of selenium from plants used in phytoremediation. International Journal of Phytoremediation 4 (4): 315–331. DOI: 10.1080/15226510208500090


Bodnar M., Konieczka P., Namiesnik J. 2012. The properties, functions, and use of selenium compounds in living organisms. Journal of Environmental Science and Health, Part C 30 (3): 225–252. DOI: 10.1080/10590501.2012.705164


Boyd R.S. 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil 293: 153–176. DOI: 10.1007/s11104-007-9240-6


Boyd R.S., Martens S.N. 1998. The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8: 1–7. DOI: 10.1007/s000490050002


Broadley M.R., Alcock J., Alford J., Cartwright P., Foot I., Fairweather-Tait S.J., Hart D.J., Hurst R., Knott P., McGrath S.P., Meacham M.C., Norman K., Mowat H., Scott P., Stroud J.L., Tovey M., Tucker M., White P.J., Young S.D., Zhao F.J. 2010. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil 332: 5–18. DOI: 10.1007/s11104-009-0234-4


Brown T.A., Shrift A. 1980. Identification of selenocysteine in the proteins of selenate-grown Vigna radiata. Plant Physiology 66: 758–761. DOI: 10.1104/pp.66.4.758


Brown T.A., Shrift A. 1981. Exclusion of selenium from proteins in selenium-tolerant Astragalus species. Plant Physiology 67: 1951–1953. DOI: 10.1104/pp.67.5.1051


Chilimba A.D.C., Young S.D., Black C.R., Meacham M.C., Lammel J., Broadley M.R. 2012. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Research 125: 118–128. DOI: 10.1016/j.fcr.2011.08.014


Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., van Breusegem F. 2000. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 57: 779–795. DOI: 10.1007/s000180050041


Dimkovikj A., Fisher B., Hutchison K., Van Hoewyk D. 2015. Stuck between a ROS and a hard place: Analysis of the ubiquitin proteasome pathway in selenocysteine treated Brassica napus reveals different toxicities during selenium assimilation. Journal of Plant Physiology 181: 50–54. DOI: 10.1016/j.jplph.2015.04.003


Domokos-Szabolcsy E., Alshaal T., Elhawat N., Abdalla N., Dos Reis A.R., El-Ramady H. 2017. The interactions between selenium,nutrients and heavy metals in higher plants under abiotic stresses. Enviroment Biodiversity and Soil Security 1: 5–31. DOI: 10.21608/jenvbs.2017.951.1001


El Kassis E., Cathala N., Rouached H., Fourcroy P., Berthomieu P., Terry N. 2007. Characterization of a selenate-resistant Arabidopsis mutant: root growth as a potential target for selenate toxicity. Plant Physiology 143 (3): 1231–1241. DOI: 10.1104/pp.106.091462


Fisher B., Yarmolinsky D., Abdel-Gany S., Pilon M., Pilon-Smits E.A., Sagi M., Van Hoewyk D. 2016. Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulphur cluster of chloroplastic ferredoxin. Plant Physiology and Biochemistry 106: 228–235. DOI: 10.1016/j.plaphy.2016.05.004


Freeman J.L., Quinn C.F., Marcus M.A., Fakra S., Pilon-Smits E.A.H. 2006. Selenium tolerant diamondback moth disarms hyperaccumulator plant defense. Current Biology 16 (22): 2181–2192. DOI: 10.1016/j.cub.2006.09.015


Freeman J.L., Tamaoki M., Stushnoff C., Quinn C.F., Cappa J.J., Devonshire J. 2010. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiology 153: 1630–1652. DOI: 10.1104/pp.110.156570


Galeas M.L., Zhang L.H., Freeman J.L., Wegner M., Pilon-Smits E.A.H. 2007. Seasonal fluctuations of selenium and sulfur accumulation in selenium-hyperaccumulators and related non-accumulators. New Phytologist 173 (3): 517–525. DOI: 10.1111/j.1469-8137.2006.01943.x


Garousi F. 2015. The toxicity of different selenium forms and compounds. Review. Agrártudományi Közlemények 64: 33–38.


Gupta M., Gupta S. 2017. An overview of selenium uptake, metabolism and toxicity in plants. Frontiers in Plant Science 7 (2074): 1–14. DOI: 10.3389/fpls.2016.02074


Habibi G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101: 31–39. DOI: 10.2478/acas-2013-0004


Handa N. 2016. Selenium: an antioxidative protectant in plants under stress. s. 179–207. W: Plant Metal Interaction: Emerging Remediation Techniques (P. Ahmad, red.). Elsevier Science Publisher, Amsterdam, Nederlands, 619 ss. DOI: 10.1016/B978-0-12-803158-2.00007-2


Hanson B., Garifullina G.F., Lindblom S.D., Wangeline A., Ackley A., Kramer K., Norton A.P., Lawrence C.B., Pilon-Smits E.A.H. 2003. Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytology 159 (2): 461–469. DOI: 10.1046/j.1469-8137.2003.00786.x


Hanson B., Lindblom S.D., Loeffler M.L., Pilon-Smits E.A.H. 2004. Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytologist 162 (3): 655–662. DOI: 10.1111/j.1469-8137.2004.01067.x


Hasanuzzaman M., Hossain M.A., Fujita M. 2010. Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. Journal of Plant Science 5 (4): 354–375. DOI: 10.3923/jps.2010.354.375


Hawrylak-Nowak B. 2015. The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum 37: 41. DOI: 10.1007/s11738-015-1788-9


Iqbal M., Hussain I., Liaqat H., Ashraa M.A., Rasheed R., Ur Rehman A. 2015. Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiology and Biochemistry 94: 95–103. DOI: 10.1016/j.plaphy.2015.05.012


Jason R., Reynolds B., Pilon-Smits E.A.H. 2018. Plant selenium hyperaccumulation – Ecological eects and potential implications for selenium cycling and community structure. Biochimica et Biophysica Acta – General Subjects 1862 (11): 2372–2382. DOI: 10.1016/j.bbagen.2018.04.018


Jianwei W., Zhaohui W., Hui M., Hubing Z., Donglin H. 2013. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Research 150: 83–90. DOI: 10.1016/j.fcr.2013.06.010


Kolbert Z., Lehotai N., Molnár A., Feigl G. 2016. “The roots” of selenium toxicity: A new concept. Plant Signaling and Behaviour 11 (10): e1241935.


Kong L., Wang M., Bi D. 2005. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation 45: 155–163. DOI: 10.1007/s10725-005-1893-7


LeDuc D.L., Tarun A.S., Montes-Bayon M., Meija J., Malit M.F., Wu C.P., Abede I., Samie M., Chiang C.Y., Tagmount A., De Souza M., Neuhierl B., Bock A., Caruso J., Terry N. 2004. Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiology 135: 377–383. DOI: 10.1104/pp.103.026989


Lidon F.C., Oliveira K., Ribeiro M.M., Pelica J., Pataco I., Ramalho J.C., Leitã A.E., Almeida A.S., Campos P.S., Ribeiro-Barros I.A., Paisc I.P., Silva M.M., Pessoa M.F., Reboredoa F.H. 2018. Selenium biofortification of rice grains and implications on macronutrients quality. Journal of Cereal Science 81: 22–29. DOI: 10.1016/j.jcs.2018.03.010


Lima L.W., Pilon-Smits E.A.H., Schiavon M. 2018. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochimica et Biophysica Acta – General Subjects 1862 (11): 2343–2353. DOI: 10.1016/j.bbagen.2018.03.028


Marecik R., Króliczak P., Cyplik P. 2006. Fitoremediacja – alternatywa dla tradycyjnych metod oczyszczania środowiska. Biotechnologia 3 (74): 88–97.


Mechora Š. 2019. Selenium as a protective agent against pests: a review. Plants 8 (8): e262. DOI: 10.3390/plants8080262


Mechora Š., Torres D., Bruns R.E., Škof M., Ugrinović K. 2017. Effect of selenium treated broccoli on herbivory and oviposition preferences of Delia radicum and Phyllotreta spp. Scientia Horticularae 225: 445–453. DOI: 10.1016/j.scienta.2017.07.032


Mechora Š., Ugrinović K. 2015. Can plant-herbivore interaction be affected by selenium? Austin Journal of Environmental Toxicology 1 (1): 5.


Mehdawi A.F., Pilon-Smits E.A.H. 2012. Ecological aspects of plant selenium hyperaccumulation. Plant Biology 14: 1–10. DOI: 10.1111/j.1438-8677.2011.00535.x


Mehdawi A.F., Quinn C.F., Pilon-Smits E.A.H. 2011. Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Current Biology 21 (17): 1440–1449. DOI: 10.1016/j.cub.2011.07.033


Mervi S., Marja T., Helinä H. 2003. Selenium effects on oxidative stress in potato. Plant Science 165 (2): 311–319. DOI: 10.1016/S0168-9452(03)00085-2


Mostafa E., Hassan A. 2015. The ameliorative effect of selenium on Azolla caroliniana grown under UV-B stress. Phytoprotection 95 (1): 20–26. DOI: 10.7202/1031954ar


Noret N., Meerts P., Vanhaelen M., Dos Santos A., Escarré J. 2007. Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152 (1): 92–100. DOI: 10.1007/s00442-006-0635-5


Pickering I.J., Wright C., Bubner B., Ellis D., Persans M.W., Yu E.Y., George G.N., Prince R.C., Salt D.E. 2003. Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiology 131: 1460–1467. DOI: 10.1104/pp.014787


Pilon-Smits E.A.H. 2015. Selenium in plants. Progress in Botany 76: 93–107.


Pilon-Smits E.A.H., Quinn C.F. 2010. Selenium metabolism in plants. s. 225–241. W: Cell Biology of Metals and Nutrients. Plant Cell Monographs 17 (R. Hell, R. Mendel, red.). Springer, Berlin, 304 ss.


Poblacionesa M.J., Rodrigoa S., Santamaríaa O., Chenb Y., McGrathb S.P. 2014. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chemistry 146: 378–384. DOI: 10.1016/j.foodchem.2013.09.070


Popham H.J.R., Shelbya K.S., Popham T.W. 2005. Effect of dietary selenium supplementation on resistance to baculovirus infection. Biological Control 32 (3): 419–426. DOI: 10.1016/j.biocontrol.2004.12.011


Pukacka S., Ratajczak E., Kalemba E. 2011. The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. Journal of Plant Physiology 168 (3): 220–225. DOI: 10.1016/j.jplph.2010.07.021


Quinn C.F., Freeman J.L., Reynolds R.J.B., Cappa J.J., Fakra S.C., Marcus M.A., Lindblom S.D., Quinn E.K., Bennett L.E., Pilon-Smits E.A.H. 2010. Selenium hyperaccumulation offers protection from cell disruptor herbivores. BMC Ecology 10: 19. DOI: 10.1186/1472-6785-10-19


Quinn C.F., Prins C.N., Freeman J.L., Gross A.M., Hantzis L.J., Reynolds R.J.B., Yang S., Covej P.A., Bañuelos G.S., Pickering I.J.M., Pilon-Smits E.A.H. 2011. Selenium accumulation in flowers and its effect on pollination. New Phytologist 192: 727–737.


Ramos S.J., Faquin V., Guilherme L.R.G., Castro E.M., Ávila F.W., Carvalho G.S., Bastos C.E.A., Oliveira C. 2010. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant and Soil Environment 56: 584–588. DOI: 10.17221/113/2010-PSE


Rascio N., Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: How and why they do it? And what makes them so interesting. Plant Science 180 (2): 169–181. DOI: 10.1016/j.plantsci.2010.08.016


Reeves R.D. 2006. Hyperaccumulation of trace elements by plants. s. 1–25. W: Phytoremediation of Metal-Contaminated Soils. NATO Science Series: IV: Earth and Environmental Sciences 68 (J.L. Morel, G. Echevarria, N. Goncharova, red.). Springer, Dordrecht, 346 ss.


Reich H.J., Hondal R.J. 2016. Why nature chose selenium. ACS Chemical Biology 11 (4): 821–841. DOI: 10.1021/acschembio.6b00031


Ríos J.J., Blasco B., Cervilla L.M., Rosales M.A., Sanchez-Rodriguez E., Romero L., Ruiz J.M. 2009. Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology 154: 107–116. DOI: 10.1111/j.1744-7348.2008.00276.x


Ros G.H., van Rotterdam A.M.D., Bussink D.W., Bindraban P.S. 2016. Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil 404: 99–112. DOI: 10.1007/s11104-016-2830-4


Sabbagh M., Van Hoewyk D. 2012. Malformed selenoproteins are removed by the ubiquitin–proteasome pathway in Stanleya pinnata. Plant and Cell Physiology 53 (3): 555–564. DOI: 10.1093/pcp/pcs015


Schomburg L., Arner E.S.J. 2017. Selenium metabolism in herbivores and higher trophic levels including mammals. s. 123–139. W: Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects (E.A.H. Pilon-Smits, L.H.E. Winkel, Z.Q. Lin,red.). Springer, Cham, 324 ss.


Schurmann P., Jacquot J.P. 2000. Plant thioredoxin systems revisited. Annual Review of Plant Physiology Plant Molecular Biology 51: 371–400. DOI: 10.1146/annurev.arplant.51.1.371


Shalaby T., Bayoumi Y., Alshaal T., Elhawat N., Sztrik A., El-Ramady H. 2017. Selenium fortification induces growth, antioxidant activity, yield and nutritional quality of lettuce in salt-affected soil using foliar and soil applications. Plant and Soil 421: 245–258. DOI: 10.1007/s11104-017-3458-8


Smoleń S., Skoczylas Ł., Ledwożyw-Smoleń I., Rakoczy R., Kopeć A., Piątkowska E., Bieżanowska-Kopeć R., Pysz M., Koronowicz A., Kapusta-Duch J., Pawłowski T. 2016. Iodine and selenium biofortification of lettuce (Lactuca sativa L.) by soil fertilization with various compounds of these elements. Acta Scientarum Pololonorum, Hortorum Cultus 15 (5): 69–91.


Terry N., Zayed A.M., De Souza M.P., Tarun A.S. 2000. Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 51: 401–432. DOI: 10.1146/annurev.arplant.51.1.401


Thavarajah D., Ruszkowski J., Vandenberg A. 2008. High potential for selenium biofortification of lentils (Lens culinaris L.). Journal of Agriculture and Food Chemistry 56 (22): 10747–10753. DOI: 10.1021/jf802307h


Tobe R., Mihara H. 2018. Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. BBA – General Subjects 1862 (11): 2433–2440. DOI: 10.1016/j.bbagen.2018.05.023


Trumble J.T., Kund G.S., White K.K. 1998. Influence of form and quantity of selenium on the development and survival of an insect herbivore. Environmental Pollution 101 (2): 175–182. DOI: 10.1016/S0269-7491(98)00086-4


Van Breusegem F., Dat J.F. 2006. Reactive oxygen species in plant cell death. Plant Physiology 141: 384–390. DOI: 10.1104/pp.106.078295


Van Hoewyk D. 2013. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Annals of Botany 112 (6): 965–972. DOI: 10.1093/aob/mct163


Van Hoewyk D., Takahashi H., Inoue E., Hess A., Tamaoki M., Pilon Smits E.A.H. 2008. Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiologia Plantarum 132: 236–253. DOI: 10.1111/j.1399-3054.2007.01002.x


Verbruggen N., Hermans C., Schat H. 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist 181: 759–776. DOI: 10.1111/j.1469-8137.2008.02748.x


Vickerman D.B., Shannon M.C., Bañuelos G.S., Grieve C.M., Trumble J.T. 2002a. Evaluation of Atriplex lines for selenium accumulation, salt tolerance and suitability for a key agricultural insect pest. Environmental Pollution 120 (2): 463–473. DOI: 10.1016/S0269-7491(02)00116-1


Vickerman D.B., Trumble J.T. 1999. Feeding preferences of Spodoptera exigua in response to form and concentration of selenium. Archives of Insect Biochemistry and Physiology 42 (1): 64–73. DOI: 10.1002/(SICI)1520-6327(199909)42:13.0.CO;2-Y


Vickerman D.B., Young J.K., Trumble J.T. 2002b. Effect of selenium-treated alfalfa on development, survival, feeding, and oviposition preferences of Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology 31 (6): 953–959. DOI: 10.1603/0046-225X-31.6.953


White P.J. 2018. Selenium metabolism in plants. Biochimica et Biophysica Acta – General Subjects 1862 (11): 2333–2342. DOI: 10.1016/j.bbagen.2018.05.006


White P.J., Bowen H.C., Parmaguru P., Fritz M., Spracklen W.P., Spiby R.E., Meachan M.C., Mead A., Harriman M., Trueman L.J.,Smith B.M., Thomas B., Broadley M.R. 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. Journal of Experimental Botany 55 (404): 1927–1937. DOI: 10.1093/jxb/erh192


Yao X., Chu J., Wang G. 2009. Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research 130: 283–290. DOI: 10.1007/s12011-009-8328-7


Progress in Plant Protection (2020) 60: 119-127
First published on-line: 2020-05-12 09:49:16
Full text (.PDF) BibTeX Mendeley Back to list